Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Antarctic iceberg impacts on future Southern Hemisphere climate


Future iceberg and meltwater discharge from the Antarctic ice sheet (AIS) could substantially exceed present levels, with strong implications for future climate and sea levels. Recent climate model simulations on the impact of a rapid disintegration of the AIS on climate have applied idealized freshwater forcing scenarios1,2 rather than the more realistic iceberg forcing. Here we use a coupled climate–iceberg model to determine the climatic effects of combined iceberg latent heat of fusion and freshwater forcing. The iceberg forcing is derived from an ensemble of future simulations conducted using the Penn State ice-sheet model3. In agreement with previous studies, the simulated AIS meltwater forcing causes a substantial delay in greenhouse warming in the Southern Hemisphere and activates a transient positive feedback between surface freshening, subsurface warming and ice-sheet/shelf melting, which can last for about 100 years and may contribute to an accelerated ice loss around Antarctica. However, accounting further for the oceanic heat loss due to iceberg melting considerably increases the surface cooling effect and reduces the subsurface temperature feedback amplitude. Our findings document the importance of considering realistic climate–ice sheet–iceberg coupling for future climate and sea-level projections.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Meltwater forcing scenarios and associated AIS sea-level contribution.
Fig. 2: Uncertainty of global and Southern Hemisphere temperature trajectories related to AIS meltwater discharge.
Fig. 3: Impact of MWF on SAT.
Fig. 4: Impact of icebergs on SAT and subsurface ocean temperatures.
Fig. 5: Impact of iceberg processes on ice–ocean feedback.

Data availability

The data that support the findings of this study are available from the corresponding author on request.

Code availability

The numerical model codes that support the findings of this study are available from the corresponding author on request.


  1. 1.

    Menviel, L., Timmermann, A., Timm, O. E. & Mouchet, A. Climate and biogeochemical response to a rapid melting of the West Antarctic Ice Sheet during interglacials and implications for future climate. Paleoceanography 25, PA4231 (2010).

    Article  Google Scholar 

  2. 2.

    Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Edwards, L. et al. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566, 58–64 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    Golledge, N. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    Swingedouw, D. et al. Antarctic ice-sheet melting provides negative feedbacks on future climate warming. Geophys. Res. Lett. 35, L17705 (2008).

    Article  Google Scholar 

  8. 8.

    Vizcaino, M., Mikolajewicz, U., Jungclaus, J. & Schurgers, G. Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Clim. Dynam. 34, 301–324 (2010).

    Article  Google Scholar 

  9. 9.

    Ma, H. & Wu, L. Global teleconnections in response to freshening over the Antarctic Ocean. J. Clim. 24, 1071–1088 (2011).

    Article  Google Scholar 

  10. 10.

    Bintanja, R., Van Oldenborgh, G., Drijfhout, S., Wouters, B. & Katsman, C. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6, 376–379 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Green, J. A. M. & Schmittner, A. Climatic consequences of a pine glacial collapse. J. Clim. 28, 9221–9234 (2015).

    Article  Google Scholar 

  12. 12.

    Fogwill, C., Phipps, S., Turney, C. & Golledge, N. Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input. Earth’s Future 3, 317–329 (2015).

    Article  Google Scholar 

  13. 13.

    Golledge, N. R. et al. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nat. Commun. 5, 5107 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Bakker, P., Clark, P. U., Golledge, N. R., Schmittner, A. & Weber, M. E. Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge. Nature 541, 72–76 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Sweet, W., Horton, R., Kopp, R., LeGrande, A. & Romanou, A. in Climate Science Special Report: Fourth National Climate Assessment Vol. I (eds Wuebbles, D. J. et al.) 333–363 (US Global Change Research Program, 2017).

  16. 16.

    Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic ice sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Jongma, J. I., Driesschaert, E., Fichefet, T., Goosse, H. & Renssen, H. The effect of dynamic– thermodynamic icebergs on the Southern Ocean climate in a three-dimensional model. Ocean Model. 26, 104–113 (2009).

    Article  Google Scholar 

  18. 18.

    Stern, A., Adcroft, A. & Sergienko, O. The effects of Antarctic iceberg calving-size distribution in a global climate model. J. Geophys. Res. Oceans 121, 5773–5788 (2016).

    Article  Google Scholar 

  19. 19.

    Rackow, T. et al. A simulation of small to giant Antarctic iceberg evolution: differential impact on climatology estimates. J. Geophys. Res. Oceans 122, 3170–3190 (2017).

    Article  Google Scholar 

  20. 20.

    Tournadre, J., Bouhier, N., Girard-Ardhuin, F. & Remy, F. Antarctic icebergs distributions 1992–2014. J. Geophys. Res. Oceans 121, 327–349 (2016).

    Article  Google Scholar 

  21. 21.

    Merino, N. et al. Impact of increasing Antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean. J. Clim. 20, 436–448 (2007).

    Article  Google Scholar 

  22. 22.

    Stouffer, R. J., Seidov, D. & Haupt, B. J. Climate response to sources of freshwater: North Atlantic versus the Southern Ocean. J. Clim. 20, 436–448 (2007).

    Article  Google Scholar 

  23. 23.

    Weaver, A. J., Saenko, O. A., Clark, P. U. & Mirtovica, J. X. Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval. Science 299, 1709–1713 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    McCreary, J. P., Furue, R., Schloesser, F., Burkhardt, T. W. & Nonaka, M. Dynamics of the Atlantic meridional overturning circulation and Southern Ocean in an ocean model of intermediate complexity. Prog. Oceanogr. 143, 46–81 (2016).

    Article  Google Scholar 

  25. 25.

    Stocker, T. F. The seesaw effect. Science 282, 61–62 (1998).

    CAS  Article  Google Scholar 

  26. 26.

    Bozbiyik, A., Steinacher, M., Joos, F., Stocker, T. & Menviel, L. Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation. Clim. Past 7, 319–338 (2011).

    Article  Google Scholar 

  27. 27.

    Menviel, L., Timmermann, A., Elison Timm, O. & Mouchet, L. Deconstructing the last glacial termination: the role of millennial and orbital-scale forcings. Quat. Sci. Rev. 30, 1155–1172 (2011).

    Article  Google Scholar 

  28. 28.

    Trenberth, K. E., Fasullo, J. T. & Balmaseda, M. A. Earth’s energy imbalance. J. Clim. 27, 3129–3144 (2014).

    Article  Google Scholar 

  29. 29.

    Jourdain, N. et al. Ocean circulation and sea-ice thinning induced by melting ice shelves in the Amundsen Sea. J. Geophys. Res. Oceans 122, 2550–2573 (2017).

    Article  Google Scholar 

  30. 30.

    Kidston, J., Taschetto, A. S., Thompson, D. W. J. & England, M. H. The influence of Southern Hemisphere sea-ice extent on the latitude of the mid-latitude jet stream. Geophys. Res. Lett. 38, L15804 (2011).

    Article  Google Scholar 

  31. 31.

    Hillenbrand, C.-D. et al. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions. Nature 547, 43–48 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Stewart, A. L. & Thompson, A. F. Eddy-mediated transport of warm circumpolar deep water across the Antarctic shelf break. Geophys. Res. Lett. 42, 432–440 (2015).

    Article  Google Scholar 

  33. 33.

    Opsteegh, J., Haarsma, R., Selten, F. & Kattenberg, A. ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus A 50, 348–367 (1998).

    Article  Google Scholar 

  34. 34.

    Lim, G. H., Holton, J. R. & Wallace, J. M. The structure of the ageostrophic wind field in baroclinic waves. J. Atmos. Sci. 48, 1733–1745 (1991).

    Article  Google Scholar 

  35. 35.

    Goosse, H., Deleersnijder, E., Fichefet, T. & England, M. Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing. J. Geophys. Res. Oceans 104, 13681–13695 (1999).

    Article  Google Scholar 

  36. 36.

    Goosse, H. & Fichefet, T. Importance of ice–ocean interactions for the global ocean circulation: a model study. J. Geophys. Res. Oceans 104, 23337–23355 (1999).

    Article  Google Scholar 

  37. 37.

    Campin, J.-M. & Goosse, H. Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinates. Tellus A 51, 412–430 (1999).

    Article  Google Scholar 

  38. 38.

    Bigg, G. R., Wadley, M. R., Stevens, D. P. & Johnson, J. A. Modelling the dynamics and thermodynamics of icebergs. Cold Reg. Sci. Technol. 26, 113–135 (1997).

    Article  Google Scholar 

  39. 39.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    Timmermann, A. & Friedrich, T. Late Pleistocene climate drivers of early human migration. Nature 538, 92–95 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Stuart, K. M. & Long, D. G. Iceberg size and orientation estimation using seawinds. Cold Reg. Sci. Technol. 69, 39–51 (2011).

    Article  Google Scholar 

  42. 42.

    Merino, N. et al. Antarctic icebergs melt over the Southern Ocean: climatology and impact on sea ice. Ocean Model. 104, 99–110 (2016).

    Article  Google Scholar 

  43. 43.

    Dickinson, H. C. & Osborne, N. S. Specific heat and heat of fusion of ice. J. Wash. Acad. Sci. 5, 338–340 (1915).

    CAS  Google Scholar 

  44. 44.

    Giauque, W. & Stout, J. The entropy of water and the third law of thermodynamics. The heat capacity of ice from 15 to 273 K. J. Am. Chem. Soc. 58, 1144–1150 (1936).

    CAS  Article  Google Scholar 

Download references


This research was supported by the National Science Foundation under award No. 1341394. A.T. is supported by the Institute for Basic Science, South Korea (Grant No. IBS-R028-D1).

Author information




F.S., A.T. and T.F designed the study. F.S conducted the model simulations and performed the analysis. F.S. and A.T. wrote the manuscript. T.F, R.D. and D.P. contributed to the writing of the manuscript. All authors contributed to interpreting the results and made substantial improvements to the manuscript.

Corresponding author

Correspondence to Axel Timmermann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Climate Change thanks Nicolas Jourdain and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schloesser, F., Friedrich, T., Timmermann, A. et al. Antarctic iceberg impacts on future Southern Hemisphere climate. Nat. Clim. Chang. 9, 672–677 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing