Persistent acceleration in global sea-level rise since the 1960s

Abstract

Previous studies reconstructed twentieth-century global mean sea level (GMSL) from sparse tide-gauge records to understand whether the recent high rates obtained from satellite altimetry are part of a longer-term acceleration. However, these analyses used techniques that can only accurately capture either the trend or the variability in GMSL, but not both. Here we present an improved hybrid sea-level reconstruction during 1900–2015 that combines previous techniques at time scales where they perform best. We find a persistent acceleration in GMSL since the 1960s and demonstrate that this is largely (~76%) associated with sea-level changes in the Indo-Pacific and South Atlantic. We show that the initiation of the acceleration in the 1960s is tightly linked to an intensification and a basin-scale equatorward shift of Southern Hemispheric westerlies, leading to increased ocean heat uptake, and hence greater rates of GMSL rise, through changes in the circulation of the Southern Ocean.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Performance of the HR in comparison to satellite altimetry and tide gauges.
Fig. 2: GMSL from the HR and satellite altimetry during 1900–2015.
Fig. 3: Regional origin of the GMSL acceleration plateau since the 1960s.
Fig. 4: Role of Southern Hemispheric wind forcing.

Data availability

The data that support the findings of this study are available from the corresponding author on request. The GMSL data from the hybrid reconstruction presented in Fig. 2 are provided as Supplementary Data 1.

Code availability

The codes for the hybrid reconstruction are available from the corresponding author upon request.

References

  1. 1.

    Cazenave, A. et al. Global sea-level budget 1993–present. Earth Syst. Sci. Data 10, 1551–1590 (2018).

  2. 2.

    Dieng, H. B., Cazenave, A., Meyssignac, B. & Ablain, M. New estimate of the current rate of sea level rise from a sea level budget approach. Geophys. Res. Lett. 44, 3744–3751 (2017).

  3. 3.

    Chen, X. et al. The increasing rate of global mean sea-level rise during 1993–2014. Nat. Clim. Change 7, 492–495 (2017).

  4. 4.

    Nerem, S. et al. Climate change driven accelerated sea level rise detected in the altimeter era. Proc. Natl Acad. Sci. USA 115, 2022–2025 (2018).

  5. 5.

    Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13, 063008 (2018).

  6. 6.

    Shepherd, A. et al. Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature 558, 219–222 (2018).

  7. 7.

    Frederikse, T., Riva, R. E. M. & King, M. Ocean bottom deformation due to present-day mass redistribution and its impact on sea level observations. Geophys. Res. Lett. 44, 306–3012 (2017).

  8. 8.

    Santamaria-Gomez, A. et al. Uncertainty of the 20th century sea-level rise due to vertical land motion. Earth Planet. Sci. Lett. 473, 24–32 (2017).

  9. 9.

    Lickley, M. J., Hay, C. C., Tamisiea, M. E. & Mitrovica, J. X. Bias in estimates of global mean sea level change inferred from satellite altimetry. J. Clim. 31, 5263–5271 (2018).

  10. 10.

    Church, J. A. & White, N. J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32, 585–602 (2011).

  11. 11.

    Meyssignac, B., Becker, M., Llovel, W. & Cazenave, A. An assessment of two-dimensional past sea level reconstructions over 1950–2009 based on tide-gauge data and different input sea level grids. Surv. Geophys. 33, 945–972 (2012).

  12. 12.

    Hay, C. H., Morrow, E., Kopp, R. E. & Mitrovica, J. X. Probabilistic reanalysis of twentieth-century sea level rise. Nature 517, 481–484 (2015).

  13. 13.

    Kopp, R. E. et al. Temperature-driven sea-level variability in the Common Era. Proc. Natl Acad. Sci. USA 113, 1434–1441 (2016).

  14. 14.

    Hay, C. H., Morrow, E. D., Kopp, R. E. & Mitrovica, J. X. On the robustness of Bayesian fingerprinting estimates of global sea level change. J. Clim. 30, 3025–3038 (2017).

  15. 15.

    Mitrovica, J. X., Tamisiea, M. E., Davis, J. L. & Milne, G. A. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409, 1026–1029 (2001).

  16. 16.

    Wenzel, M. & Schroeter, J. Reconstruction of regional mean sea level anomalies from tide gauges using neural networks. J. Geophys. Res. 115, C08013 (2010).

  17. 17.

    Dangendorf, S. et al. Detecting anthropogenic footprints in sea level rise. Nat. Commun. 6, 7849 (2015).

  18. 18.

    Calafat, F. M., Chambers, D. P. & Tsimplis, M. N. On the ability of global sea level reconstructions to determine trends and variability. J. Geophys. Res. 119, 1572–1592 (2014).

  19. 19.

    Hamlington, B. D. et al. Separating decadal global water cycle variability from sea level rise. Sci. Rep. 7, 995 (2017).

  20. 20.

    Mu, D., Yan, H. & Feng, W. Assessment of sea level variability derived by EOF reconstruction. Geophys. J. Int. 214, 79–87 (2018).

  21. 21.

    Dangendorf, S. et al. Reassessment of 20th century global mean sea level rise. Proc. Natl Acad. Sci. USA 114, 5946–5951 (2017).

  22. 22.

    Carson, M. et al. Regional sea level variability and trends, 1960–2007: a comparison of sea level reconstructions and ocean syntheses. J. Geophys. Res. 122, 9068–9091 (2017).

  23. 23.

    Thompson, P. R. & Merrifield, M. A. A unique asymmetry in the pattern of recent sea level change. Geophys. Res. Lett. 41, 7675–7683 (2014).

  24. 24.

    Calafat, F. M. & Chambers, D. Quantifying recent acceleration in sea level unrelated to internal climate variability. Geophys. Res. Lett. 40, 3661–3666 (2013).

  25. 25.

    Thompson, P. R., Merrifield, M. A., Wells, J. R. & Chang, C. M. Wind-driven coastal sea level variability in the Northeast Pacific. J. Clim. 27, 4733–4751 (2014).

  26. 26.

    Merrifield, M. A., Merrifield, S. T. & Mitchum, G. T. An anomalous recent acceleration of global sea level rise. J. Clim. 22, 5772–5781 (2009).

  27. 27.

    Fasullo, J. T., Nerem, R. S. & Hamlington, B. Is the detection of accelerated sea level rise imminent? Sci. Rep. 6, 31245 (2016).

  28. 28.

    Cazenave, A. et al. The rate of sea-level rise. Nat. Clim. Change 4, 358–361 (2014).

  29. 29.

    Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345, 919–921 (2014).

  30. 30.

    Slangen, A. B. A. et al. Anthropogenic forcing dominates global mean sea-level rise since 1970. Nat. Clim. Change 6, 701–705 (2016).

  31. 31.

    Marcos, M. et al. Internal variability versus anthropogenic forcing on sea level and its components. Surv. Geophys. 38, 329–348 (2017).

  32. 32.

    Chylek, P., Box, J. E. & Lesins, G. Global warming and the Greenland ice sheet. Climatic Change 63, 201–221 (2004).

  33. 33.

    Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 13 (IPCC, Cambridge Univ. Press, 2013).

  34. 34.

    Bouttes, N. J., Gregory, J. M., Kuhlbrodt, T. & Suzuki, T. The effect of windstress change on future sea level change in the Southern Ocean. Geophys. Res. Lett. 39, L23602 (2012).

  35. 35.

    Slangen, A. B. A., Church, J. A., Zhang, X. & Monselesan, S. P. The sea level response to external forcings in historical simulations of CMIP5 climate models. J. Clim. 28, 8521–8539 (2015).

  36. 36.

    Francombe, L. E. et al. Sea level changes forced by Southern Ocean winds. Geophys. Res. Lett. 40, 5710–5715 (2013).

  37. 37.

    Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemispheric surface climate change. Nat. Geosci. 4, 741–749 (2011).

  38. 38.

    Compo, G. P. et al. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011).

  39. 39.

    Swart, N. C. & Fyfe, J. C. Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res Lett. 39, L16711 (2012).

  40. 40.

    Frederikse, T., Jevrejeva, S., Riva, R. E. M. & Dangendorf, S. A consistent sea-level reconstruction and its budget on basin and global scales over 1958-2014. J. Clim. 31, 1267–1280 (2018).

  41. 41.

    Abraham, J. P. et al. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev. Geophys. 51, 450–483 (2013).

  42. 42.

    Marzeion, B., Leclercq, P. W., Cogley, J. G. & Jarosch, A. H. Brief communication: global reconstructions of glacier mass change during the 20th century are consistent. Cryosphere 9, 2399–2404 (2015).

  43. 43.

    Kjeldsen, K. K. et al. Spatial and temporal distribution of mass loss from the Greenland ice sheet since AD 1900. Nature 528, 396–400 (2015).

  44. 44.

    Church, J. A., Monselesan, D., Gregory, J. M. & Marzeion, B. Evaluating the ability of process based models to project sea-level change. Environ. Res. Lett. 8, 014051 (2013).

  45. 45.

    Church, J. A., White, N. J. & Arblaster, J. M. Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature 438, 74–77 (2005).

  46. 46.

    Watson, C. S. et al. Unabated global mean sea-level rise over the satellite altimeter era. Nat. Clim. Change 5, 565–568 (2015).

  47. 47.

    Church, J. A. et al. Estimates of the regional distribution of sea level rise over the 1950–2000 period. J. Clim. 17, 2609–2625 (2004).

  48. 48.

    Strassburg, M. W., Hamlington, B. D., Leben, R. R. & Kim, K. Y. A comparative study of sea level reconstruction techniques using 20 years of satellite altimetry data. J. Geophys, Res. 119, 4068–4082 (2014).

  49. 49.

    Woodworth, P. L. et al. Evidence for the accelerations of sea level on multi-decade and century timescales. Int. J. Climatol. 29, 777–789 (2009).

  50. 50.

    Haigh, I. D. et al. Timescales for detecting a significant acceleration in sea level rise. Nat. Commun. 5, 3635 (2014).

  51. 51.

    Visser, H., Dangendorf, S. & Peterson, A. A review of trend models applied to sea level data with reference to the ‘acceleration-deceleration debate’. J. Geophys. Res. 120, 3873–3895 (2015).

  52. 52.

    Miller, L. & Douglas, B. C. Gyre-scale atmospheric pressure variations and their relation to 19th and 20th century sea level rise. Geophys. Res. Lett. 34, L16602 (2007).

  53. 53.

    Chambers, D. P., Merrifield, M. A. & Nerem, R. S. Is there a 60-year oscillation in global mean sea level? Geophys. Res. Lett. 18, L18607 (2012).

  54. 54.

    Dangendorf, S. et al. Evidence for long-term memory in sea level. Geophys. Res. Lett. 15, 5530–5537 (2014).

  55. 55.

    Jevrejeva, S., Grinsted, A., Moore, J. C. & Holgate, S. Nonlinear trends and multiyear cycles in sea level records. J. Geophys. Res. 111, C09012 (2006).

  56. 56.

    Dangendorf, S. et al. Mean sea level variability in the North Sea: processes and implications. J. Geophys. Res. 119, 6820–6841 (2014).

  57. 57.

    Holgate, S. J. et al. New data systems and products at the permanent service for mean sea level. J. Coast. Res. 29, 493–504 (2013).

  58. 58.

    Peltier, W. R. Global glacial isostacy and the surface of the Ice-Age Earth: the ICE5G(VM2) model and GRACE. Ann. Rev. Earth Planet Sci. 32, 111–149 (2004).

  59. 59.

    Quartly, G. D. et al. Retrieving sea level and freeboard in the Arctic: a review of current radar altimetry methodologies and future perspectives. Remote Sens. 11, 881 (2019).

  60. 60.

    Schwanghart, W. & Kuhn, N. J. A set of Matlab functions for topographic analysis. Environ. Model. Softw. 25, 770–781 (2010).

  61. 61.

    Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

  62. 62.

    von Storch, H. & Zwiers, F. M. Statistical Analysis in Climate Research (Cambridge Univ. Press, 1999).

  63. 63.

    Piecuch, C. G. et al. Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content. J. Geophys. Res. 122, 7181–7197 (2017).

Download references

Acknowledgements

We are grateful to the International Space Science Institute (Bern, Switzerland) for support of the International Team ‘Towards a Unified Sea Level Record’, the University of Siegen for the funding of the interdisciplinary research project ‘PEPSEA’, and the Bundesministerium für Bildung und Forschung for the funding of the project ‘MSL Absolut’ (funding number: 03KIS116). S.D further acknowledges a visiting scientist fellowship of the University of the Balearic Islands and the FOKOS of the University of Siegen for funding a research stay at the Boston College. C.G.P. was supported by NSF awards OCE-1558966 and OCE-1834739. We acknowledge T. Wahl and R. Gehrels for providing comments on an earlier version of the manuscript.

Author information

S.D. designed and performed the research and wrote the first draft of the paper. C.H. and F.M.C contributed their results/codes for the Kalman Smoother and the RSOI approach, respectively. C.G.P. helped with the assessment of the wind forcing. K.B. contributed to the coding of the statistical analysis tools. All authors shared ideas and contributed to the writing of the manuscript.

Correspondence to Sönke Dangendorf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Climate Change thanks Graham Quartly and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and references.

Supplementary Data 1

Contains the monthly GMSL estimate with the associated uncertainties from the hybrid reconstruction.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark