Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An emerging tropical cyclone–deadly heat compound hazard


Climate change may bring new hazards through novel combinations of extreme weather (compound events)1. Here we evaluate the possibility of dangerous heat following major tropical cyclones (TCs)—a combination with serious potential consequences given that mega-blackouts may follow powerful TCs2, and the heavy reliance on air conditioning3. We show that ‘TC–heat’ events are already possible along densely populated coastlines globally but, to date, only an estimated 1,000 people have been impacted. However, this number could rise markedly with over two million at risk under a storyline of the observed TCs recurring in a world 2 °C warmer than pre-industrial times. Using analogues as focusing events we show, for example, that if the catastrophic 1991 Bangladesh cyclone occurred with 2 °C global warming, there would be >70% chance of subsequent dangerous heat. This research highlights a gap in adaptation planning and a need to prepare for an emerging TC–heat compound hazard.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed TCs and extreme heat.
Fig. 2: Seasonal climatologies for major TC occurrence and extent of HI40.6 by ocean basin.
Fig. 3: Composite impact of a major TC passage on meteorology across all ocean basins.
Fig. 4: Change in TC–heat hazard under climate change.
Fig. 5: Analogue major TCs under climate warming.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.


  1. Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    Article  Google Scholar 

  2. Houser, T. & Marsters, P. The World’s Second Largest Blackout (Rhodium Group, 2018);

  3. Barreca, A., Clay, K., Deschenes, O., Greenstone, M. & Shapiro, J. S. Adapting to climate change: the remarkable decline in the U.S. temperature-mortality relationship over the twentieth century. J. Political Econ. 124, 105–159 (2016).

    Article  Google Scholar 

  4. Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).

    Article  Google Scholar 

  5. Vicedo-Cabrera, A. M. et al. Temperature-related mortality impacts under and beyond Paris agreement climate change scenarios. Clim. Change 150, 391–402 (2018).

    Article  Google Scholar 

  6. The Future of Cooling: Opportunities for Energy-efficient Air Conditioning (International Energy Agency, 2018).

  7. Yu, J. et al. A comparison of the thermal adaptability of people accustomed to air-conditioned environments and naturally ventilated environments. Indoor Air 22, 110–118 (2012).

    Article  CAS  Google Scholar 

  8. Abi-Samra, N., McConnach, J., Mukhopadhyay, S. & Wojszczyk, B. When the bough breaks: managing extreme weather events affecting electrical power grids. IEEE Power Energy Mag. 12, 61–65 (2014).

    Article  Google Scholar 

  9. Hurricanes Maria and Irma November 20 Event Summary Report No. 78; 1–5 (US Department of Energy, Infrastructure Security & Energy Restoration, 2017).

  10. Typhoon Bopha Situation Report No. 16 (UN Office for the Coordination of Humanitarian Affairs, 2013).

  11. Emanuel, K. A. The maximum intensity of hurricanes. J. Atmos. Sci. 45, 1143–1155 (1988).

    Article  Google Scholar 

  12. Hart, R. E., Maue, R. N. & Watson, M. C. Estimating local memory of tropical cyclones through MPI anomaly evolution. Mon. Weather Rev. 135, 3990–4005 (2007).

    Article  Google Scholar 

  13. Sriver, R. L. & Huber, M. Observational evidence for an ocean heat pump induced by tropical cyclones. Nature 447, 577–580 (2007).

    Article  CAS  Google Scholar 

  14. Matthews, T. K. R., Wilby, R. L. & Murphy, C. Communicating the deadly consequences of global warming for human heat stress. Proc. Natl Acad. Sci. USA 114, 3861–3866 (2017).

    Article  CAS  Google Scholar 

  15. Beven, J. L. et al. Atlantic hurricane season of 2005. Mon. Weather Rev. 136, 1109–1173 (2008).

    Article  Google Scholar 

  16. Morella, C. Power outages continue in Philippines following typhoon. UCA News (17 July 2014).

  17. Guha-Sapir, D., Below, R. & Hoyois, P. The CRED/OFDA International Disaster Database (EM-DAT, accessed 9 August 2018);

  18. Albadra, D., Coley, D. & Hart, J. Toward healthy housing for the displaced. J. Archit. 23, 115–136 (2018).

    Article  Google Scholar 

  19. McCarthy, P. Operation Sea Angel: A Case Study (US Army, 1994).

  20. Hanna, E. G. & Tait, P. W. Limitations to thermoregulation and acclimatization challenge human adaptation to global warming. Int. J. Environ. Res. Public Health 12, 8034–8074 (2015).

    Article  CAS  Google Scholar 

  21. Camargo, S. J. Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climatol. 26, 9880–9902 (2013).

    Article  Google Scholar 

  22. Dwyer, J. G. et al. Projected twenty-first-century changes in the length of the tropical cyclone season. J. Climatol. 28, 6181–6192 (2015).

    Article  Google Scholar 

  23. Lewis, S. C. & King, A. D. Evolution of mean, variance and extremes in 21st century temperatures. Weather Clim. Extrem. 15, 1–10 (2017).

    Article  Google Scholar 

  24. Byrne, M. P. & O’Gorman, P. A. Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophys. Res. Lett. 40, 5223–5227 (2013).

    Article  Google Scholar 

  25. Matthews, T. Humid heat and climate change. Prog. Phys. Geogr. 42, 391–405 (2018).

    Article  Google Scholar 

  26. Haarsma, R. J. et al. High resolution model intercomparison project (HighResMIPv1.0) for CMIP6. Geosci. Model. 9, 4185–4208 (2016).

    Article  Google Scholar 

  27. Lin, N. & Emanuel, K. Grey swan tropical cyclones. Nat. Clim. Change 6, 106–111 (2016).

    Article  Google Scholar 

  28. Kang, N.-Y. & Elsner, J. B. Trade-off between intensity and frequency of global tropical cyclones. Nat. Clim. Change 5, 661–664 (2015).

    Article  Google Scholar 

  29. Petkova Elisaveta, P. et al. Towards more comprehensive projections of urban heat-related mortality: estimates for New York City under multiple population, adaptation, and climate scenarios. Environ. Health Perspect. 125, 47–55 (2017).

    Article  CAS  Google Scholar 

  30. Delworth, T. L., Mahlman, J. D. & Knutson, T. R. Changes in heat index associated with CO2-Induced global warming. Clim. Change 43, 369–386 (1999).

    Article  CAS  Google Scholar 

  31. Diffenbaugh, N. S., Pal, J. S., Giorgi, F. & Gao, X. Heat stress intensification in the Mediterranean climate change hotspot. Geophys. Res. Lett. 34, L11706 (2007).

    Article  Google Scholar 

  32. Zhao, Y., Ducharne, A., Sultan, B., Braconnot, P. & Vautard, R. Estimating heat stress from climate-based indicators: present-day biases and future spreads in the CMIP5 global climate model ensemble. Environ. Res. Lett. 10, 084013 (2015).

    Article  Google Scholar 

  33. Anderson, G. B., Bell, M. L. & Peng, R. D. Methods to calculate the heat index as an exposure metric in environmental health research. Environ. Health Perspect. 121, 1111–1119 (2013).

    Article  Google Scholar 

  34. Weedon Graham, P. et al. The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).

    Article  Google Scholar 

  35. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. QJR Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  36. Rye, C. J., Arnold, N. S., Willis, I. C. & Kohler, J. Modeling the surface mass balance of a high Arctic glacier using the ERA-40 reanalysis. J. Geophys. Res. Earth Surf. 115, F02014 (2010).

    Article  Google Scholar 

  37. Kantha, L. Time to replace the Saffir-Simpson hurricane scale? EOS Trans. Am. Geophys. Union 87, 3–6 (2006).

    Article  Google Scholar 

  38. International Best Track Archive for Climate Stewardship (IBTrACS) Technical Documentation (BTrACS Science Team, 2018).

  39. Gridded Population of the World, Version 4 (GPWv4): Population Count Adjusted to Match 2015 Revision of UN WPP Country Totals, Revision 10 (Center for International Earth Science Information Network, Columbia University, 2017);

  40. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. Atmos. 117, D08101 (2012).

    Article  Google Scholar 

  41. Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, (2010).

  42. Muller, R. A. et al. A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinform. Geostat. (2013).

  43. Willett, K. M. & Sherwood, S. Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol. 32, 161–177 (2012).

    Article  Google Scholar 

  44. Murakami, H. et al. Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Clim. 28, 9058–9079 (2015).

    Article  Google Scholar 

  45. Wilks, D. S. Statistical Methods in the Atmospheric Sciences (Academic Press, 2011).

  46. Glantz, M. H. The use of analogies: in forecasting ecological and societal responses to global warming. Environ. Sci. Policy Sustain. Dev. 33, 10–33 (1991).

    Article  Google Scholar 

  47. Matthews, T., Mullan, D., Wilby, R. L., Broderick, C. & Murphy, C. Past and future climate change in the context of memorable seasonal extremes. Clim. Risk Manag. 11, 37–52 (2016).

    Article  Google Scholar 

Download references


The authors thank M. Foote for discussion on the TC–heat hazard before TCs make landfall.

Author information

Authors and Affiliations



T.M. conceived the study and conducted the analysis. All authors contributed equally to study design and writing the manuscript.

Corresponding author

Correspondence to T. Matthews.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Climate Change thanks Ning Lin, Jakob Zscheischler and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Notes, Supplementary Fig. 1, Supplementary Table 1 and Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthews, T., Wilby, R.L. & Murphy, C. An emerging tropical cyclone–deadly heat compound hazard. Nat. Clim. Chang. 9, 602–606 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene