Management for network diversity speeds evolutionary adaptation to climate change

Abstract

Ecosystems around the world are reorganizing due to climate change1, motivating management responses to facilitate species persistence and maintain ecological functions. Spatial management actions are generally undertaken to relieve local stressors on populations and have recently been suggested as an approach to facilitate species range shifts, provide refugia and enhance resilience to climate change2,3. Efforts to identify which habitats to protect, however, typically assume that organisms do not evolve in response to shifting environmental conditions4,5 despite growing evidence that rapid evolutionary responses occur under new selective regimes in the wild6,7. It is not clear whether conservation strategies would be different if evolutionary dynamics were considered during conservation planning. Here, we show that evolutionary responses fundamentally change recommendations for conservation actions. With spatially explicit simulations of a simple three-species coral reef ecosystem, we show that the preferred management strategies changed from those focusing on thermal refugia when evolutionary capacity was absent to those prioritizing trait and habitat diversity or high cover when adaptive evolution was possible. Prioritizing habitat diversity protects heat resistant populations and protects cooler refuges and the stepping stones between them. The protection of habitat heterogeneity and connectivity also produced substantially larger benefits outside reserves than refugia-based strategies, providing conservation planners an opportunity to facilitate adaptation to ongoing and unpredictable change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Evolutionary capacity improves long-term coral cover when faced with climate change.
Fig. 2: Average cover of corals inside protected reserves relative to outside protected reserves across the duration of simulations.
Fig. 3: The presence of evolution alters which conservation strategies perform best.

Data availability

The simulated datasets generated during this study are available from https://github.com/pinskylab/ecoevo_coral.

Code availability

The R code used to generate the simulated datasets is available from https://github.com/pinskylab/ecoevo_coral.

References

  1. 1.

    Grimm, N. B. et al. The impacts of climate change on ecosystem structure and function. Front. Ecol. Environ. 11, 474–482 (2013).

    Article  Google Scholar 

  2. 2.

    Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).

    Article  Google Scholar 

  3. 3.

    McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl Acad. Sci. USA 113, 7195–7200 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Arauo, M. B. & Rahbek, C. How does climate change affect biodiversity? Science 313, 1396–1397 (2006).

    Article  Google Scholar 

  5. 5.

    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Article  Google Scholar 

  6. 6.

    Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).

    Article  Google Scholar 

  7. 7.

    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Kennedy, E. V. et al. Avoiding coral reef functional collapse requires local and global action. Curr. Biol. 23, 912–918 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Harborne, A. R., Rogers, A., Bozec, Y. & Mumby, P. J. Multiple stressors and the functioning of coral reefs. Ann. Rev. Mar. Sci. 9, 445–468 (2017).

    Article  Google Scholar 

  10. 10.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Science 543, 373–377 (2017).

    CAS  Google Scholar 

  11. 11.

    Ortiz, J. C., González-Rivero, M. & Mumby, P. J. An ecosystem-level perspective on the host and symbiont traits needed to mitigate climate change impacts on Caribbean coral reefs. Ecosystems 17, 1–13 (2014).

    Article  Google Scholar 

  12. 12.

    Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Logan, C. A., Dunne, J. P., Eakin, C. M. & Donner, S. D. Incorporating adaptive responses into future projections of coral bleaching. Global Change Biol. 20, 125–139 (2014).

    Article  Google Scholar 

  14. 14.

    Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, e1701413 (2017).

    Article  Google Scholar 

  15. 15.

    Mumby, P. J. et al. Reserve design for uncertain responses of coral reefs to climate change. Ecol. Lett. 14, 132–140 (2011).

    Article  Google Scholar 

  16. 16.

    Norberg, J. et al. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Chang. 2, 747 (2012).

    Article  Google Scholar 

  17. 17.

    Baskett, M. L. et al. Conservation management approaches to protecting the capacity for corals to respond to climate change: a theoretical comparison. Global Change Biol. 16, 1229–1246 (2010).

    Article  Google Scholar 

  18. 18.

    Mumby, P. J. & Hastings, A. The impact of ecosystem connectivity on coral reef resilience. J. Appl. Ecol. 45, 854–862 (2008).

    Article  Google Scholar 

  19. 19.

    Bay, R. A. & Palumbi, S. R. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol. Evol. 7, 1602–1612 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Mumby, P. J. & Harborne, A. R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS ONE 5, e8657 (2010).

    Article  Google Scholar 

  22. 22.

    Mousseau, T. A. & Roff, D. A. Natural selection and the heritability of fitness components. Heredity 59, 181–197 (1987).

    Article  Google Scholar 

  23. 23.

    Fine, M., Gildor, H. & Genin, A. A coral reef refuge in the Red Sea. Global Change Biol. 19, 3640–3647 (2013).

    Article  Google Scholar 

  24. 24.

    Levy, J. S. & Ban, N. C. A method for incorporating climate change modelling into marine conservation planning: an Indo–West Pacific example. Mar. Policy 38, 16–24 (2013).

    Article  Google Scholar 

  25. 25.

    Keppel, G. et al. The capacity of refugia for conservation planning under climate change. Front. Ecol. Environ. 13, 106–112 (2015).

    Article  Google Scholar 

  26. 26.

    Mumby, P. J. et al. Operationalizing the resilience of coral reefs in an era of climate change. Conserv. Lett. 7, 176–187 (2014).

    Article  Google Scholar 

  27. 27.

    Enquist, B. J. et al. Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Adv. Ecol. Res. 52, 249–318 (2015).

  28. 28.

    Webster, M. S. et al. Who should pick the winners of climate change? Trends Ecol. Evol. 32, 167–173 (2017).

    Article  Google Scholar 

  29. 29.

    Schindler, D. E. & Hilborn, R. Prediction, precaution, and policy under global change. Science 347, 953–954 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Lawler, J. J. et al. The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change. Conserv. Biol. 29, 618–629 (2015).

    Article  Google Scholar 

  31. 31.

    Baskett, M. L., Gaines, S. D. & Nisbet, R. M. Symbiont diversity may help coral reefs survive moderate climate change. Ecol. Appl. 19, 3–17 (2009).

    Article  Google Scholar 

  32. 32.

    Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    Darling, E. S. et al. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).

    Article  Google Scholar 

  34. 34.

    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479 (2011).

    CAS  Article  Google Scholar 

  35. 35.

    Kinnison, M. T. & Hairston, N. G. Eco‐evolutionary conservation biology: contemporary evolution and the dynamics of persistence. Funct. Ecol. 21, 444–454 (2007).

    Article  Google Scholar 

  36. 36.

    Pierson, J. C. et al. Incorporating evolutionary processes into population viability models. Conserv. Biol. 29, 755–764 (2015).

    Article  Google Scholar 

  37. 37.

    Kirkpatrick, M. & Barton, N. H. Evolution of a species range. Am. Nat. 150, 1–23 (1997).

    CAS  Article  Google Scholar 

  38. 38.

    Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am. Zool. 19, 357–366 (1979).

    Article  Google Scholar 

  39. 39.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    CAS  Article  Google Scholar 

  40. 40.

    Langmead, O. & Sheppard, C. Coral reef community dynamics and disturbance: a simulation model. Ecol. Model. 175, 271–290 (2004).

    Article  Google Scholar 

  41. 41.

    McClanahan, T. R. & Muthiga, N. A. An ecological shift in a remote coral atoll of Belize over 25 years. Environ. Conserv. 25, 122–130 (1998).

    Article  Google Scholar 

  42. 42.

    Anthony, K. R. et al. Ocean acidification and warming will lower coral reef resilience. Global Change Biol. 17, 1798–1808 (2011).

    Article  Google Scholar 

  43. 43.

    Koch, M. et al. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biol. 19, 103–132 (2013).

    Article  Google Scholar 

  44. 44.

    Diaz-Pulido, G. et al. in Climate Change and the Great Barrier Reef (eds Johnson, J. E. & Marshall, P. A.) 153–192 (Great Barrier Reef Marine Park Authority, 2007).

  45. 45.

    Meyer, E. et al. Genetic variation in responses to a settlement cue and elevated temperature in the reef-building coral Acropora millepora. Mar. Ecol. Prog. Ser. 392, 81–92 (2009).

    CAS  Article  Google Scholar 

  46. 46.

    Heron, S. F. et al. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Climate Change 2014: Synthesis Report (eds Core Writing Team et al.) (IPCC, 2014).

  48. 48.

    Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecol. Biogeogr. 21, 393–404 (2012).

    Article  Google Scholar 

  49. 49.

    Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Ann. Rev. Ecol. Evol. Syst. 37, 433–458 (2006).

    Article  Google Scholar 

  50. 50.

    Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).

    Article  Google Scholar 

  51. 51.

    Côté, I. M. & Darling, E. S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 8, e1000438 (2010).

    Article  Google Scholar 

  52. 52.

    Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the Gordon and Betty Moore Foundation for their generous funding and support of this research. S. Eminhizer provided valuable project support. A. Stier provided valuable discussions during early model development. Members of the Schindler Lab at the University of Washington and the Pinsky Lab at Rutgers University provided helpful feedback during model and manuscript development.

Author information

Affiliations

Authors

Contributions

T.E.W., D.E.S., M.A.C., M.S.W. and M.L.P. conceived the study. T.E.W., D.E.S., M.A.C., M.S.W., S.R.P., P.J.M., T.E.E. and M.L.P. designed the experiments. T.E.W. developed the models and ran the analyses. T.E.W., D.E.S., M.A.C., M.S.W., S.R.P., P.J.M., T.E.E. and M.L.P. interpreted the results. T.E.W., D.E.S., M.A.C., M.S.W., S.R.P., P.J.M., T.E.E. and M.L.P. wrote and/or substantively revised the manuscript.

Corresponding author

Correspondence to Timothy E. Walsworth.

Additional information

Peer review information: Nature Climate Change thanks Curry Cunningham, Jon Norberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Supplementary Figs. 1–3.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walsworth, T.E., Schindler, D.E., Colton, M.A. et al. Management for network diversity speeds evolutionary adaptation to climate change. Nat. Clim. Chang. 9, 632–636 (2019). https://doi.org/10.1038/s41558-019-0518-5

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing