Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Shifting avian spatial regimes in a changing climate

Abstract

In the present era of rapid global change, development of early warnings of ecological regime shifts is a major focus in ecology. Identifying and tracking shifts in spatial regimes is a new approach with potential to enhance understanding of ecological responses to global change. Here, we show strong directional non-stationarity of spatial regimes identified by avian community body mass data. We do this by tracking 46 years of avian spatial regime movement in the North American Great Plains. The northernmost spatial regime boundary moved >590 km northward, and the southernmost boundary moved >260 km northward. Tracking spatial regimes affords decadal planning horizons and moves beyond the predominately temporal early warnings of the past by providing spatiotemporally explicit detection of regime shifts in systems without fixed boundaries.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Shifts in spatial regime boundaries demonstrated by breeding bird body mass discontinuities from 1970 to 2015 in the North American Great Plains.
Fig. 2: Visualization and tracking of predicted decadal spatial regimes and their boundaries in the North American Great Plains.
Fig. 3: Global changes influencing ecological regimes in central North America.
Fig. 4: Spatial regime boundary movement between 37 and 42° latitude across a network of protected areas in central North America.

Data availability

All data are available in the Supplementary Data.

Code availability

R code and instructions for repeating analyses are available in the Supplementary Data.

References

  1. 1.

    Allen, C. R., Angeler, D. G., Garmestani, A. S., Gunderson, L. H. & Holling, C. S. Panarchy: theory and application. Ecosystems 17, 578–589 (2014).

    Article  Google Scholar 

  2. 2.

    Dakos, V., Carpenter, S. R., Nes, E. Hvan & Scheffer, M. Resilience indicators: prospects and limitations for early warnings of regime shifts. Philos. Trans. R. Soc. Lond. B 370, 20130263 (2015).

    Article  Google Scholar 

  3. 3.

    Burthe, S. J. et al. Do early warning indicators consistently predict nonlinear change in long-term ecological data? J. Appl. Ecol. 53, 666–676 (2016).

    Article  Google Scholar 

  4. 4.

    Dakos, V. et al. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PloS ONE 7, e41010 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Carpenter, S. R. et al. Early warnings of regime shifts: A whole-ecosystem experiment. Science 332, 1079–1082 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Kefi, S. et al. Early warning signals of ecological transitions: Methods for spatial patterns. PloS ONE 9, e92097 (2014).

    Article  Google Scholar 

  7. 7.

    Cline, T. J. et al. Early warnings of regime shifts: Evaluation of spatial indicators from a whole-ecosystem experiment. Ecosphere 5, 1–13 (2014).

    Article  Google Scholar 

  8. 8.

    Butitta, V. L., Carpenter, S. R., Loken, L. C., Pace, M. L. & Stanley, E. H. Spatial early warning signals in a lake manipulation. Ecosphere 8, e01941 (2017).

    Article  Google Scholar 

  9. 9.

    Clements, C. F. & Ozgul, A. Indicators of transitions in biological systems. Ecol. Lett. 21, 905–919 (2018).

    Article  Google Scholar 

  10. 10.

    Sundstrom, S. M. et al. Detecting spatial regimes in ecosystems. Ecol. Lett. 20, 19–32 (2017).

    Article  Google Scholar 

  11. 11.

    Roberts, C. P. et al. Early warnings for state transitions. Rangeland Ecol. Manag. 71, 659–670 (2018).

    Article  Google Scholar 

  12. 12.

    Allen, C. R. et al. Quantifying spatial resilience. J. Appl. Ecol. 53, 625–635 (2016).

    Article  Google Scholar 

  13. 13.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    Strayer, D. L., Power, M. E., Fagan, W. F., Pickett, S. T. & Belnap, J. A classification of ecological boundaries. BioScience 53, 723–729 (2003).

    Article  Google Scholar 

  15. 15.

    Angeler, D. G. et al. Management applications of discontinuity theory. J. Appl. Ecol. 53, 688–698 (2016).

    Article  Google Scholar 

  16. 16.

    Holling, C. S. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol. Monogr. 62, 447–502 (1992).

    Article  Google Scholar 

  17. 17.

    Spanbauer, T. L. et al. Body size distributions signal a regime shift in a lake ecosystem. Proc. R. Soc. Lond. B 283, 20160249 (2016).

    Article  Google Scholar 

  18. 18.

    Drake, J. M. & Griffen, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Doncaster, C. P. et al. Early warning of critical transitions in biodiversity from compositional disorder. Ecology 97, 3079–3090 (2016).

    Article  Google Scholar 

  20. 20.

    Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    La Sorte, F. A., Hochachka, W. M., Farnsworth, A., Dhondt, A. A. & Sheldon, D. The implications of mid-latitude climate extremes for North American migratory bird populations. Ecosphere 7, e01261 (2016).

    Article  Google Scholar 

  22. 22.

    Brown, D. G., Johnson, K. M., Loveland, T. R. & Theobald, D. M. Rural land-use trends in the conterminous United States, 1950–2000. Ecol. Appl. 15, 1851–1863 (2005).

    Article  Google Scholar 

  23. 23.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Johnston, C. A. Agricultural expansion: land use shell game in the US Northern Plains. Landsc. Ecol. 29, 81–95 (2014).

    Article  Google Scholar 

  25. 25.

    Allred, B. W. et al. Ecosystem services lost to oil and gas in North America. Science 348, 401–402 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Donovan, V. M., Wonkka, C. L. & Twidwell, D. Surging wildfire activity in a grassland biome. Geophys. Res. Lett. 44, 5986–5993 (2017).

    Article  Google Scholar 

  27. 27.

    Engle, D. M., Coppedge, B. R. & Fuhlendorf, S. D. in Western North American Juniperus Communities (ed. Van Auken, O. W.) 253–271 (Springer, 2008).

  28. 28.

    Boettiger, C., Ross, N. & Hastings, A. Early warning signals: the charted and uncharted territories. Theor. Ecol. 6, 255–264 (2013).

    Article  Google Scholar 

  29. 29.

    Hastings, A. & Wysham, D. B. Regime shifts in ecological systems can occur with no warning. Ecol. Lett. 13, 464–472 (2010).

    Article  Google Scholar 

  30. 30.

    Clements, C. F., Drake, J. M., Griffiths, J. I. & Ozgul, A. Factors influencing the detectability of early warning signals of population collapse. Am. Nat. 186, 50–58 (2015).

    Article  Google Scholar 

  31. 31.

    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    Biggs, R., Carpenter, S. R. & Brock, W. A. Turning back from the brink: detecting an impending regime shift in time to avert it. Proc. Natl Acad. Sci. USA 106, 826–831 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    Craig, R. K. Stationarity is dead-long live transformation: five principles for climate change adaptation law. HELR Harvard Environ. Law Rev. 34, 9 (2010).

    Google Scholar 

  34. 34.

    Twidwell, D., Allred, B. W. & Fuhlendorf, S. D. National-scale assessment of ecological content in the world’s largest land management framework. Ecosphere 4, 1–27 (2013).

    Article  Google Scholar 

  35. 35.

    Baho, D. L., Drakare, S., Johnson, R. K., Allen, C. R. & Angeler, D. G. Similar resilience attributes in lakes with different management practices. PLoS ONE 9, e91881 (2014).

    Article  Google Scholar 

  36. 36.

    Ficetola, G. F., Mazel, F. & Thuiller, W. Global determinants of zoogeographical boundaries. Nat. Ecol. Evol. 1, 0089 (2017).

    Article  Google Scholar 

  37. 37.

    Glor, R. E. & Warren, D. Testing ecological explanations for biogeographic boundaries. Evolution 65, 673–683 (2011).

    Article  Google Scholar 

  38. 38.

    Briske, D., Bestelmeyer, B., Stringham, T. & Shaver, P. Recommendations for development of resilience-based state-and-transition models. Rangeland Ecol. Manag. 61, 359–367 (2008).

    Article  Google Scholar 

  39. 39.

    Jantz, S. M. et al. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation. Conserv. Biol. 29, 1122–1131 (2015).

    Article  Google Scholar 

  40. 40.

    Birgé, H. E., Allen, C. R., Craig, R. K. & Twidwell, D. in Practical Panarchy for Adaptive Water Governance (eds Consens, B. & Gunderson, L.) 115–130 (Springer, 2018).

  41. 41.

    Sauer, J. R. et al. The North American Breeding Bird Survey, Results and Analysis 1966–2015 (USGS Patuxent Wildlife Research Center, 2017).

  42. 42.

    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).

    Article  Google Scholar 

  43. 43.

    Hovick, T. J. et al. Informing conservation by identifying range shift patterns across breeding habitats and migration strategies. Biodivers. Conserv. 25, 345–356 (2016).

    Article  Google Scholar 

  44. 44.

    Drummond, M. A. et al. Land change variability and human–environment dynamics in the United States Great Plains. Land Use Policy 29, 710–723 (2012).

    Article  Google Scholar 

  45. 45.

    Dunning Jr, J. B. CRC Handbook of Avian Body Masses (CRC, 2007)

  46. 46.

    Barichievy, C. et al. A method to detect discontinuities in census data. Ecol. Evol. 8, 9614–9623 (2018).

    Article  Google Scholar 

  47. 47.

    Stow, C., Allen, C. R. & Garmestani, A. S. Evaluating discontinuities in complex systems: toward quantitative measures of resilience. Ecol. Soc. 12, (2007).

  48. 48.

    Nash, K. L. et al. Discontinuities, cross-scale patterns, and the organization of ecosystems. Ecology 95, 654–667 (2014).

    Article  Google Scholar 

  49. 49.

    Sundstrom, S. M. & Allen, C. R. Complexity versus certainty in understanding species’ declines. Divers. Distrib. 20, 344–355 (2014).

    Article  Google Scholar 

  50. 50.

    Lipsey, M. W. Design Sensitivity: Statistical Power for Experimental Research (Sage, 1990).

  51. 51.

    Allen, C. R., Forys, E. A. & Holling, C. Body mass patterns predict invasions and extinctions in transforming landscapes. Ecosystems 2, 114–121 (1999).

    Article  Google Scholar 

  52. 52.

    Wickham, H. Reshaping data with the reshape package. J. Stat. Softw. 21, 1–20 (2007).

    Article  Google Scholar 

  53. 53.

    Dowle, M. et al. data.table: Extension ofdata.frame’ v1.12.2 (CRAN, 2018); https://rdrr.io/cran/data.table/.

  54. 54.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2008).

  55. 55.

    Galzin, R. & Legendre, P. The fish communities of a coral reef transect. Pac. Sci. 41, 1–4 (1987).

    Google Scholar 

  56. 56.

    Vermaire, J. C., Greffard, M.-H., Saulnier-Talbot, É. & Gregory-Eaves, I. Changes in submerged macrophyte abundance altered diatom and chironomid assemblages in a shallow lake. J. Paleolimnol. 50, 447–456 (2013).

    Article  Google Scholar 

  57. 57.

    Leys, B., Finsinger, W. & Carcaillet, C. Historical range of fire frequency is not the Achilles’ heel of the Corsican black pine ecosystem. J. Ecol. 102, 381–395 (2014).

    Article  Google Scholar 

  58. 58.

    Vormisto, J., Phillips, O., Ruokolainen, K., Tuomisto, H. & Vásquez, R. A comparison of fine-scale distribution patterns of four plant groups in an Amazonian rainforest. Ecography 23, 349–359 (2000).

    Article  Google Scholar 

  59. 59.

    Juggins, S. rioja: Analysis of Quaternary Science Data v0.9-21 (CRAN, 2017); https://rdrr.io/cran/rioja/man/PTF.html

  60. 60.

    Bennett, K. D. Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132, 155–170 (1996).

    Article  Google Scholar 

  61. 61.

    Wood, S. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Lond. B. 73, 3–36 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Complexity Working Group for conceptual development, J. L. Burnett for help in database creation, and D. Ebbeka and C. Bielski for help with data visualization. This work was supported by Department of Defense Strategic Environmental Research Development Program W912HQ-15-C-0018, Nebraska Game & Parks Commission W-125-R-1 and the Institute of Agriculture and Natural Resources at the University of Nebraska, Lincoln. The Nebraska Cooperative Fish and Wildlife Research Unit is jointly supported by a cooperative agreement between the US Geological Survey, the Nebraska Game and Parks Commission, the University of Nebraska, the US Fish and Wildlife Service and the Wildlife Management Institute. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Affiliations

Authors

Contributions

C.P.R. contributed to conceptualization, programming, validation, formal analysis, data curation, all writing aspects, visualization and project administration. C.R.A., D.G.A. and D.T. contributed to funding acquisition, conceptualization, all writing aspects and visualization.

Corresponding author

Correspondence to Caleb P. Roberts.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Climate Change thanks Eldar Rakhimberdiev and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Reporting Summary

Supplementary Data 1

Zipped file of data, R code and instructions for repeating analyses.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roberts, C.P., Allen, C.R., Angeler, D.G. et al. Shifting avian spatial regimes in a changing climate. Nat. Clim. Chang. 9, 562–566 (2019). https://doi.org/10.1038/s41558-019-0517-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing