Arctic greening and bird nest predation risk across tundra ecotones


Alarming global-scale declines of bird numbers are occurring under the changing climate1, and species belonging to alpine and Arctic tundra are particularly affected2,3. Increased nest predation appears to be involved4, but the mechanisms linking predation to climate change remain to be shown. Here we test the prediction from food web theory that increased primary productivity (greening of tundra) in a warming Arctic leads to a higher risk of nest predation in tundra ecosystems. By exploiting landscape-scale spatial heterogeneity in areas of primary productivity across alpine tundra ecotones and supplied with experimental nests in sub-Arctic Scandinavia, we found that predation risk indeed increased with primary productivity. The productivity-predation risk relation was independent of the simultaneous effects of rodent population dynamics and vegetation cover at nest sites. Predation risk also increased steeply with altitude, implying that species at the high-altitude end of the alpine tundra ecotones are particularly vulnerable. Our study contributes to an improved understanding of how climate change may affect Arctic and alpine ecosystems and threaten endemic biodiversity through a trophic cascade.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Study design.
Fig. 2: Estimated nest predation risk per 14-d exposure periods.

Code availability

The R code used to analyze the data is available from the corresponding author upon request.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.


  1. 1.

    Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Elsen, P. R. & Tingley, M. W. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Chang. 5, 772 (2015).

    Article  Google Scholar 

  3. 3.

    Meltofte, H. Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity: Synthesis (Conservation of Arctic Flora and Fauna, 2013).

  4. 4.

    Kubelka, T. et al. Global pattern of nest predation is disrupted by climate change in shorebirds. Science 362, 680–683 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Post, E. et al. Ecological dynamics across the arctic associated with recent climate change. Science 325, 1355–1358 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    Lehikoinen, A., Green, M., Husby, M., Kålås, J. A. & Lindström, Å. Common montane birds are declining in northern Europe. J. Avian Biol. 45, 3–14 (2014).

    Article  Google Scholar 

  8. 8.

    Elmhagen, B., Kindberg, J., Hellstrom, P. & Angerbjorn, A. A boreal invasion in response to climate change? Range shifts and community effects in the borderland between forest and tundra. Ambio 44, S39–S50 (2015).

    Article  Google Scholar 

  9. 9.

    Callaghan, T. V. et al. Ecosystem change and stability over multiple decades in the Swedish subarctic: complex processes and multiple drivers. Philos. Trans.R. Soc. B 368, 20120488 (2013).

    Article  Google Scholar 

  10. 10.

    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: Biodiversity conservation in a changing climate. Science 332, 53–58 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Martin, T. E. Avian life history evolution in relation to nest sites, nest predation, and food. Ecol. Monogr. 65, 101–127 (1995).

    Article  Google Scholar 

  13. 13.

    Martin, T. E. Nest predation and nest sites: New perspectives on old patterns. Bioscience 43, 523–532 (1993).

    Article  Google Scholar 

  14. 14.

    Ibáñez-Álamo, J. D. et al. Nest predation research: recent findings and future perspectives. J. Ornithol. 156, 247–262 (2015).

    Article  Google Scholar 

  15. 15.

    Chapin, F. S. III et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    Xu, L. et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Chang. 3, 581 (2013).

    Article  Google Scholar 

  17. 17.

    Legagneux, P. et al. Arctic ecosystem structure and functioning shaped by climate and herbivore body size. Nat. Clim. Chang. 4, 379 (2014).

    Article  Google Scholar 

  18. 18.

    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Chang. 5, 887 (2015).

    Article  Google Scholar 

  19. 19.

    McKinnon, L. et al. Lower predation risk for migratory birds at high latitudes. Science 327, 326–327 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    Ims, R. A. & Fuglei, E. Trophic interaction cycles in tundra ecosystems and the impact of climate change. Bioscience 55, 311–322 (2005).

    Article  Google Scholar 

  21. 21.

    Gilg, O. & Yoccoz, N. G. Ecology. Explaining bird migration. Science 327, 276–277 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Oksanen, L. & Oksanen, T. The logic and realism of the hypothesis of exploitation ecosystems. Am. Nat. 155, 703–723 (2000).

    Article  Google Scholar 

  23. 23.

    Maron, J. L. & Harrison, S. Spatial pattern formation in an insect host-parasitoid system. Science 278, 1619–1621 (1997).

    CAS  Article  Google Scholar 

  24. 24.

    Henden, J. A., Ims, R. A., Fuglei, E. & Pedersen, Å. Ø. Changed Arctic-alpine food web interactions under rapid climate warming: Implication for ptarmigan research. Wildlife Biol. SP1, 1–11 (2017).

  25. 25.

    Sokolov, A. A., Sokolova, N. A., Ims, R. A., Brucker, L. & Ehrich, D. Emergent rainy winter warm spells may promote boreal predator expansion into the Arctic. Arctic 69, 121–129 (2015).

    Article  Google Scholar 

  26. 26.

    Roslin, T. et al. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742–744 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Andrén, H. Corvid density and nest predation in relation to forest fragmentation: A landscape perspective. Ecology 73, 794–804 (1992).

    Article  Google Scholar 

  28. 28.

    Storch, I., Woitke, E. & Krieger, S. Landscape-scale edge effect in predation risk in forest-farmland mosaics of central Europe. Landsc. Ecol. 20, 927–940 (2005).

    Article  Google Scholar 

  29. 29.

    Killengreen, S. T., Strømseng, E., Yoccoz, N. G. & Ims, R. A. How ecological neighbourhoods influence the structure of the scavenger guild in low Arctic tundra. Divers. Distrib. 18, 563–574 (2012).

    Article  Google Scholar 

  30. 30.

    Ims, R. A., Henden, J.-A., Thingnes, A. V. & Killengreen, S. T. Indirect food web interactions mediated by predator–rodent dynamics: relative roles of lemmings and voles. Biol. Lett. 9, 20130802 (2013).

    Article  Google Scholar 

  31. 31.

    Marolla, F. et al. Assessing the effect of predator control on an endangered goose population subjected to predator-mediated food web dynamics. J. Appl. Ecol. 56, 1245–1255 (2019).

    Article  Google Scholar 

  32. 32.

    Moen, A, Lillethun, A. & Odland, A. Vegetation. (Norwegian Mapping Authority: 1999).

  33. 33.

    Bateman, P. W., Fleming, P. A. & Wolfe, A. K. A different kind of ecological modelling: the use of clay model organisms to explore predator–prey interactions in vertebrates. J. Zool. 301, 251–262 (2017).

    Article  Google Scholar 

  34. 34.

    McKinnon, L. et al. Suitability of artificial nests—response. Science 328, 46–47 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    Haftorn, S. Birds of Norway (Universitetsforlaget Oslo, 1971).

  36. 36.

    Ims, R. A., Yoccoz, N. G. & Killengreen, S. T. Determinants of lemming outbreaks. Proc. Natl Acad. Sci. USA 108, 1970–1974 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Ims, R. A. et al. Ecosystem drivers of an Arctic fox population at the western fringe of the Eurasian Arctic. Polar Res. (2017).

    Article  Google Scholar 

  38. 38.

    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    Article  Google Scholar 

  39. 39.

    Andrén, H., Angelstam, P., Lindstrom, E. & Widen, P. Differences in predation pressure in relation to habitat fragmentation - an experiment. Oikos 45, 273–277 (1985).

    Article  Google Scholar 

  40. 40.

    Donovan, T. M., Jones, P. W., Annand, E. M. & Thompson, F. R. Variation in local-scale edge effects: Mechanisms and landscape context. Ecology 78, 2064–2075 (1997).

    Article  Google Scholar 

  41. 41.

    Kurki, S., Nikula, A., Helle, P. & Lindén, H. Landscape fragmentation and forest composition effects on grouse breeding success in boreal forests. Ecology 81, 1985–1997 (2000).

    Google Scholar 

  42. 42.

    Harju, S. M., Olson, C. V., Hess, J. E. & Bedrosian, B. Common raven movement and space use: influence of anthropogenic subsidies within greater sage‐grouse nesting habitat. Ecosphere 9, e02348 (2018).

    Article  Google Scholar 

  43. 43.

    Walton, Z., Samelius, G., Odden, M. & Willebrand, T. Variation in home range size of red foxes Vulpes vulpes along a gradient of productivity and human landscape alteration. PLoS ONE 12, e0175291 (2017).

    Article  Google Scholar 

  44. 44.

    Didan, K. MOD13Q1 v006: MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid (USGS, 2015).

  45. 45.

    Pinheiro, J. & Bates, D. Mixed-Effects Models in S and S-PLUS (Springer, 2000).

  46. 46.

    Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  47. 47.

    Burnham, K. P. & Anderson, D. A. Model selection and multimodel inference: a practical information-theoretic approach 2nd edn (Springer, New York, 2002).

  48. 48.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R² from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article  Google Scholar 

Download references


Funding was provided by the projects EcoFinn, SUSTAIN and Climate-Ecological Observatory for Arctic Tundra (COAT). We thank E.H. Borge, S.-L. Nilssen, A.A. Olsen, Christian Hagstrøm and Mary-Ann J. Wara for assistance in the field. The very thorough and constructive comments of three anonymous reviewers helped us prepare the final version of the manuscript.

Author information




R.A.I. and J.A.H. conceived the study. J.A.H. and J.U.J. analyzed the data. A.V.T., M.J.G. and M.A.S. conducted the experiment. R.A.I. wrote the manuscript with contribution from all authors.

Corresponding author

Correspondence to Rolf A. Ims.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Climate Change thanks Katherine Selwood, Quentin Read and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, and Supplementary Figs. 1 and 2.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ims, R.A., Henden, J., Strømeng, M.A. et al. Arctic greening and bird nest predation risk across tundra ecotones. Nat. Clim. Chang. 9, 607–610 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing