A simple model predicts how warming simplifies wild food webs


Warming increases the metabolic demand of consumers1, strengthening their feeding interactions2. This could alter energy fluxes3,4,5 and even amplify extinction rates within the food web6,7,8. Such effects could simplify the structure and dynamics of ecological networks9,10, although an empirical test in natural systems has been lacking. Here, we tested this hypothesis by characterizing around 50,000 directly observed feeding interactions across 14 naturally heated stream ecosystems11,12,13,14,15. We found that higher temperature simplified food-web structure and shortened the pathways of energy flux between consumers and resources. A simple allometric diet breadth model10,16 predicted 68–82% of feeding interactions and the effects of warming on key food-web properties. We used model simulations to identify the underlying mechanism as a change in the relative diversity and abundance of consumers and their resources. This model shows how warming can reduce the stability of aquatic ecosystems by eroding the structural integrity of the food web. Given these fundamental drivers, such responses are expected to be manifested more broadly and could be predicted using our modelling framework and knowledge of how warming alters some routinely measured characteristics of organisms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The effect of temperature on the properties of food webs.
Fig. 2: Temperature effects on energy flux.
Fig. 3: Effect of randomizations on temperature dependence of food-web properties.
Fig. 4: Key determinants of food-web properties.

Data availability

The data that support the findings of this study are available from E.J.O. on reasonable request.

Code availability

The R code that supports the findings of this study is available from E.J.O. on reasonable request.


  1. 1.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  2. 2.

    Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Phil. Trans. R. Soc. Lond. B 367, 2923–2934 (2012).

    Article  Google Scholar 

  3. 3.

    O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7, e1000178 (2009).

    Article  Google Scholar 

  4. 4.

    Shurin, J. B., Clasen, J. L., Greig, H. S., Kratina, P. & Thompson, P. L. Warming shifts top-down and bottom-up control of pond food web structure and function. Phil. Trans. R. Soc. Lond. B 367, 3008–3017 (2012).

    Article  Google Scholar 

  5. 5.

    Schwarz, B. et al. Warming alters energetic structure and function but not resilience of soil food webs. Nat. Clim. Change 7, 895–900 (2017).

    Article  Google Scholar 

  6. 6.

    Petchey, O. L., McPhearson, P. T., Casey, T. M. & Morin, P. J. Environmental warming alters food-web structure and ecosystem function. Nature 402, 69–72 (1999).

    CAS  Article  Google Scholar 

  7. 7.

    Vucic-Pestic, O., Ehnes, R. B., Rall, B. C. & Brose, U. Warming up the system: higher predator feeding rates but lower energetic efficiencies. Glob. Change Biol. 17, 1301–1310 (2011).

    Article  Google Scholar 

  8. 8.

    Fussmann, K. E., Schwarzmüller, F., Brose, U., Jousset, A. & Rall, B. C. Ecological stability in response to warming. Nat. Clim. Change 4, 206–210 (2014).

    Article  Google Scholar 

  9. 9.

    Binzer, A., Guill, C., Rall, B. C. & Brose, U. Interactive effects of warming, eutrophication and size-structure: impacts on biodiversity and food-web structure. Glob. Change Biol. 22, 220–227 (2016).

    Article  Google Scholar 

  10. 10.

    Petchey, O. L., Brose, U. & Rall, B. C. Predicting the effects of temperature on food web connectance. Phil. Trans. R. Soc. Lond. B 365, 2081–2091 (2010).

    Article  Google Scholar 

  11. 11.

    Friberg, N. et al. Relationships between structure and function in streams contrasting in temperature. Freshw. Biol. 54, 2051–2068 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    O’Gorman, E. J. et al. Unexpected changes in community size structure in a natural warming experiment. Nat. Clim. Change 7, 659–663 (2017).

    Article  Google Scholar 

  13. 13.

    O’Gorman, E. J. et al. Impacts of warming on the structure and functioning of aquatic communities: individual- to ecosystem-level responses. Adv. Ecol. Res. 47, 81–176 (2012).

    Article  Google Scholar 

  14. 14.

    O’Gorman, E. J. et al. Temperature effects on fish production across a natural thermal gradient. Glob. Change Biol. 22, 3206–3220 (2016).

    Article  Google Scholar 

  15. 15.

    Adams, G. et al. Diatoms can be an important exception to temperature-size rules at species and community levels of organization. Glob. Change Biol. 19, 3540–3552 (2013).

    Google Scholar 

  16. 16.

    Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl Acad. Sci. USA 105, 4191–4196 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    Pimm, S. L. Food Webs (Univ. Chicago Press, 1982).

  18. 18.

    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

    CAS  Article  Google Scholar 

  20. 20.

    Elton, C. S. Animal Ecology (Sidgwick & Jackson, 1927).

  21. 21.

    McCauley, D. J. et al. On the prevalence and dynamics of inverted trophic pyramids and otherwise top-heavy communities. Ecol. Lett. 21, 439–454 (2018).

    Article  Google Scholar 

  22. 22.

    O’Gorman, E. J. et al. Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia. Glob. Change Biol. 20, 3291–3299 (2014).

    Article  Google Scholar 

  23. 23.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Article  Google Scholar 

  24. 24.

    Gilbert, A. J. Connectance indicates the robustness of food webs when subjected to species loss. Ecol. Indic. 9, 72–80 (2009).

    Article  Google Scholar 

  25. 25.

    Cohen, J. E., Schittler, D. N., Raffaelli, D. G. & Reuman, D. C. Food webs are more than the sum of their tritrophic parts. Proc. Natl Acad. Sci. USA 106, 22335–22340 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    Woodson, C. B., Schramski, J. R. & Joye, S. B. A unifying theory for top-heavy ecosystem structure in the ocean. Nat. Commun. 9, 23 (2018).

    Article  Google Scholar 

  27. 27.

    Neutel, A. M., Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: weak links in long loops. Science 296, 1120–1123 (2002).

    CAS  Article  Google Scholar 

  28. 28.

    Ings, T. C. et al. Ecological networks—beyond food webs. J. Anim. Ecol. 78, 253–269 (2009).

    Article  Google Scholar 

  29. 29.

    Tunney, T. D., McCann, K. S., Lester, N. P. & Shuter, B. J. Effects of differential habitat warming on complex communities. Proc. Natl Acad. Sci. USA 111, 8077–8082 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    van Vliet, M., Ludwig, F., Zwolsman, J., Weedon, G. & Kabat, P. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Wat. Resour. Res. 47, W02544 (2011).

    Article  Google Scholar 

  31. 31.

    Gray, C. et al. Ecological networks: the missing links in biomonitoring science. J. Appl. Ecol. 51, 1444–1449 (2014).

    Article  Google Scholar 

  32. 32.

    Branch, T. A. et al. The trophic fingerprint of marine fisheries. Nature 468, 431–435 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    Smith-Ramesh, L. M., Moore, A. C. & Schmitz, O. J. Global synthesis suggests that food web connectance correlates to invasion resistance. Glob. Change Biol. 23, 465–473 (2017).

    Article  Google Scholar 

  34. 34.

    Barnes, A. D. et al. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nat. Commun. 5, 5351 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Cohen, J. E. et al. Improving food webs. Ecology 74, 252–258 (1993).

    Article  Google Scholar 

  36. 36.

    Gordon, T. A. C., Neto-Cerejeira, J., Furey, P. C. & O’Gorman, E. J. Changes in feeding selectivity of freshwater invertebrates across a natural thermal gradient. Curr. Zool. 64, 231–242 (2018).

    Article  Google Scholar 

  37. 37.

    Williams, R. J. & Martinez, N. D. Limits to trophic levels and omnivory in complex food webs: theory and data. Am. Nat. 163, 458–468 (2004).

    Article  Google Scholar 

  38. 38.

    Martinez, N. D. Artifacts or attributes—effects of resolution on the little-rock lake food web. Ecol. Monogr. 61, 367–392 (1991).

    Article  Google Scholar 

  39. 39.

    Clitherow, L. R., Carrivick, J. L. & Brown, L. E. Food web structure in a harsh glacier-fed river. PLoS ONE 8, e60899 (2013).

    CAS  Article  Google Scholar 

  40. 40.

    Perkins, D. M. et al. Bending the rules: exploitation of allochthonous resources by a top‐predator modifies size‐abundance scaling in stream food webs. Ecol. Lett. 21, 1771–1780 (2018).

    Article  Google Scholar 

  41. 41.

    Thompson, M. S. et al. Large woody debris “rewilding” rapidly restores biodiversity in riverine food webs. J. Appl. Ecol. 55, 895–904 (2018).

    Article  Google Scholar 

  42. 42.

    Woodward, G. et al. Climate change impacts in multispecies systems: drought alters food web size structure in a field experiment. Phil. Trans. R. Soc. Lond. B 367, 2990–2997 (2012).

    Article  Google Scholar 

  43. 43.

    James, D. A. et al. A generalized model for estimating the energy density of invertebrates. Freshw. Sci. 31, 69–77 (2012).

    Article  Google Scholar 

  44. 44.

    Hartman, K. J. & Brandt, S. B. Estimating energy density of fish. Trans. Am. Fish. Soc. 124, 347–355 (1995).

    Article  Google Scholar 

  45. 45.

    Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P. & Del Borghi, M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. 48, 1146–1151 (2009).

    CAS  Article  Google Scholar 

  46. 46.

    Riede, J. O. et al. Stepping in Elton’s footprints: a general scaling model for body masses and trophic levels across ecosystems. Ecol. Lett. 14, 169–178 (2011).

    Article  Google Scholar 

Download references


We thank G. M. Gíslason for providing research support and laboratory facilities; R. L. Kordas (Imperial College London, UK), G. Adams (University College London, UK), E. J. Cox and L. M. Cachazo (Natural History Museum, London, UK), I. Hansen and S. O. Helgason (Marine and Freshwater Research Institute, Iceland), and P. C. Furey (St Catherine University, USA) for help with taxonomic identification. We acknowledge funding from NERC (NE/I009280/2, NE/F013124/1, NE/L011840/1 and NE/M020843/1), Imperial College London’s Masters in Ecology, Evolution and Conservation, and the University of Zurich Research Priority Programme Global Change and Biodiversity.

Author information




E.J.O., O.L.P. and G.W. were responsible for funding applications, research design and planning of the experiments. E.J.O., K.J.F., B.G., T.A.C.G., J.N.-C., J.S.Ó., D.E.P. and M.S.A.T. collected the data. E.J.O and O.L.P. analysed the data. All authors wrote the paper.

Corresponding authors

Correspondence to Eoin J. O’Gorman or Guy Woodward.

Additional information

Peer review information: Nature Climate Change thanks Micael Jonsson, Oswald Schmitz and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figs. 1–16, Supplementary Tables 1–7 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

O’Gorman, E.J., Petchey, O.L., Faulkner, K.J. et al. A simple model predicts how warming simplifies wild food webs. Nat. Clim. Chang. 9, 611–616 (2019). https://doi.org/10.1038/s41558-019-0513-x

Download citation

Further reading