Widespread increase of boreal summer dry season length over the Congo rainforest

Abstract

Dry season length strongly influences tropical rainforest vegetation and is largely determined by precipitation patterns1,2. Over the Amazon, the dry season length has increased since 1979 and severe short-term droughts have occurred3,4. However, similar changes have not been investigated for the world’s second largest rainforest, the Congo Basin, where long-term drying and large-scale declines in forest greenness and canopy water content were reported5. Here we present observational evidence for widespread increases in the boreal summer (June–August) dry season length over the Congo Basin since the 1980s, from both hydrological and ecological perspectives. We analysed both dry season onset and dry season end via multiple independent precipitation and satellite-derived vegetation datasets for the period 1979–2015. The dry season length increased by 6.4–10.4 days per decade in the period 1988–2013, primarily attributed to an earlier dry season onset and a delayed dry season end. The earlier dry season onset was caused by long-term droughts due to decreased rainfall in the pre-dry season (April–June). The delayed dry season end resulted from insufficiently replenished soil moisture, which postpones the start of the next wet season and hinders vegetation regrowth. If such changes continue, the enhanced water stress in a warming climate may affect the carbon cycle and alter the composition and structure of evergreen rainforest1,6.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Spatial patterns of linear trends of the JJA DSL from four precipitation datasets for the period 1988–2013.
Fig. 2: Regionally aggregated interannual variations and linear trends of the JJA DSL and DSO.
Fig. 3: JJA dry season changes estimated by NDVI and VOD.
Fig. 4: Interannual variability of standardized regional mean precipitation, soil moisture and vegetation parameters for the period 1980–2015.
Fig. 5: JJA dry season changes estimated by NDVI and SIF for the period 2007–2015.

Data availability

The daily and monthly GPCC precipitation datasets are available at https://doi.org/10.5676/DWD_GPCC/FD_D_V1_100. The 5-d GPCP precipitation data are available at https://precip.gsfc.nasa.gov/. The 5-d CMAP precipitation data are available at https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html. The satellite-observed NDVI datasets are available from the NASA Earth Exchange (NEX) website (https://nex.nasa.gov/nex). VOD and SIF datasets are available upon request from L.Z.

Code availability

The Python language was used to generate all results. Scripts are available upon request from L.Z.

References

  1. 1.

    Lewis, S. L. Tropical forests and the changing earth system. Philos. Trans. R. Soc. Lond. B 361, 195–210 (2006).

    Article  Google Scholar 

  2. 2.

    Engelbrecht, B. M. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    Fu, R. et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA 110, 18110–18115 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 3, 52–58 (2013).

    Article  Google Scholar 

  5. 5.

    Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Fauset, S. et al. Drought‐induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett. 15, 1120–1129 (2012).

    Article  Google Scholar 

  7. 7.

    Nicholson, S. E. The ITCZ and the seasonal cycle over equatorial Africa. Bull. Am. Meteorol. Soc. 99, 337–348 (2018).

    Article  Google Scholar 

  8. 8.

    Wright, S. J. & Van Schaik, C. P. Light and the phenology of tropical trees. Am. Nat. 143, 192–199 (1994).

    Article  Google Scholar 

  9. 9.

    Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, L06405 (2006).

    Article  Google Scholar 

  10. 10.

    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Marengo, J. A. et al. The drought of Amazonia in 2005. J. Clim. 21, 495–516 (2008).

    Article  Google Scholar 

  12. 12.

    Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R. & Rodriguez, D. A. The drought of 2010 in the context of historical droughts in the Amazon region. Geophys. Res. Lett. 38, 1096–1104 (2011).

    Article  Google Scholar 

  13. 13.

    Erfanian, A., Wang, G. & Fomenko, L. Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST. Sci. Rep. 7, 5811 (2017).

    Article  Google Scholar 

  14. 14.

    Hua, W. et al. Possible causes of the Central Equatorial African long-term drought. Environ. Res. Lett. 11, 124002 (2016).

    Article  Google Scholar 

  15. 15.

    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Schamm, K. et al. GPCC Full Data Daily Version 1.0 at 1.0: Daily Land-surface Precipitation from Rain-gauges Built on GTS-based and Historic Data (GPCC, 2015); https://doi.org/10.5676/DWD_GPCC/FD_D_V1_100

  17. 17.

    Xie, P. et al. GPCP pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates. J. Clim. 16, 2197–2214 (2003).

    Article  Google Scholar 

  18. 18.

    Xie, P. & Arkin, P. A. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 78, 2539–2558 (1997).

    Article  Google Scholar 

  19. 19.

    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article  Google Scholar 

  20. 20.

    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    Article  Google Scholar 

  21. 21.

    Liu, Y. Y., Dijk, A. I., McCabe, M. F., Evans, J. P. & Jeu, R. A. Global vegetation biomass change (1988–2008) and attribution to environmental and human drivers. Glob. Ecol. Biogeogr. 22, 692–705 (2013).

    Article  Google Scholar 

  22. 22.

    Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 6, 2803–2823 (2013).

    Article  Google Scholar 

  23. 23.

    Masih, I., Maskey, S., Mussá, F. & Trambauer, P. A review of droughts on the African continent: a geospatial and long-term perspective. Hydrol. Earth Syst. Sci. 18, 3635 (2014).

    Article  Google Scholar 

  24. 24.

    Ridolfi, L., D’Odorico, P. & Laio, F. Effect of vegetation–water table feedbacks on the stability and resilience of plant ecosystems. Wat. Resour. Res. 42, W01201 (2006).

    Article  Google Scholar 

  25. 25.

    Dyer, E. L. et al. Congo Basin precipitation: assessing seasonality, regional interactions, and sources of moisture. J. Geophys. Res. Atmos. 122, 6882–6898 (2017).

    Article  Google Scholar 

  26. 26.

    Berg, A. et al. Land-atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Chang. 6, 869–874 (2016).

    Article  Google Scholar 

  27. 27.

    Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    Article  Google Scholar 

  29. 29.

    Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    Washington, R., James, R., Pearce, H., Pokam, W. M. & Moufouma-Okia, W. Congo Basin rainfall climatology: can we believe the climate models? Philos. Trans. R. Soc. Lond. B 368, 20120296 (2013).

    Article  Google Scholar 

  32. 32.

    Nicholson, S., Klotter, D., Dezfuli, A. & Zhou, L. New rainfall datasets for the Congo Basin and surrounding regions. J. Hydrometeorol. 19, 1379–1396 (2018).

    Article  Google Scholar 

  33. 33.

    Molod, A., Takacs, L., Suarez, M. & Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model Dev. 8, 1339–1356 (2015).

    Article  Google Scholar 

  34. 34.

    Hua, W., Zhou, L., Nicholson, S. E., Chen, H. & Qin, M. Assessing reanalysis data for understanding rainfall climatology and variability over Central Equatorial Africa. Clim. Dynam. https://doi.org/10.1007/s00382-018-04604-0 (2019).

    Article  Google Scholar 

  35. 35.

    Fan, Y. & van den Dool, H. Climate Prediction Center global monthly soil moisture data set at 0.5 resolution for 1948 to present. J. Geophys. Res. Atmos. 109, D10102 (2004).

    Article  Google Scholar 

  36. 36.

    Reichle, R. H. et al. Assessment of MERRA-2 land surface hydrology estimates. J. Clim. 30, 2937–2960 (2017).

    Article  Google Scholar 

  37. 37.

    Albergel, C., De Rosnay, P., Balsamo, G., Isaksen, L. & Muñoz-Sabater, J. Soil moisture analyses at ECMWF: evaluation using global ground-based in situ observations. J. Hydrometeorol. 13, 1442–1460 (2012).

    Article  Google Scholar 

  38. 38.

    Beck, H. E. et al. Global evaluation of four AVHRR–NDVI data sets: intercomparison and assessment against Landsat imagery. Remote Sens. Environ. 115, 2547–2563 (2011).

    Article  Google Scholar 

  39. 39.

    Asefi-Najafabady, S. & Saatchi, S. Response of African humid tropical forests to recent rainfall anomalies. Philos. Trans. R. Soc. Lond. B 368, 20120306 (2013).

    Article  Google Scholar 

  40. 40.

    Eastman, J. R. & Filk, M. Long sequence time series evaluation using standardized principal components. Photo. Eng. Remote Sens. 59, 991–996 (1993).

    Google Scholar 

  41. 41.

    Anyamba, A. & Tucker, C. J. in Remote Sensing of Drought: Innovative Monitoring Approaches (eds Wardlow B. D. et al.) Ch. 2 (CGR Press, 2012).

  42. 42.

    Joiner, J., Yoshida, Y., Guanter, L. & Middleton, E. M. New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY. Atmos. Meas. Tech. 9, 3939–3967 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Sun, Y. et al. Overview of solar-induced chlorophyll fluorescence (SIF) from the orbiting carbon observatory-2: retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sens. Environ. 209, 808–823 (2018).

    Article  Google Scholar 

  44. 44.

    Krause, G. & Weis, E. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).

    CAS  Article  Google Scholar 

  45. 45.

    Liebmann, B. et al. Seasonality of African precipitation from 1996 to 2009. J. Clim. 25, 4304–4322 (2012).

    Article  Google Scholar 

  46. 46.

    Dunning, C. M., Black, E. C. & Allan, R. P. The onset and cessation of seasonal rainfall over Africa. J. Geophys. Res. Atmos. 121, 405–24 (2016).

    Article  Google Scholar 

  47. 47.

    Yang, W., Seager, R., Cane, M. A. & Lyon, B. The annual cycle of East African precipitation. J. Clim. 28, 2385–2404 (2015).

    Article  Google Scholar 

  48. 48.

    Joiner, J., Yoshida, Y., Vasilkov, A. & Middleton, E. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8, 637–651 (2011).

    CAS  Article  Google Scholar 

  49. 49.

    Tucker, C. J. et al. An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).

    Article  Google Scholar 

  50. 50.

    Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Chang. 5, 470 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by National Science Foundation (NSF No. AGS-1535426). MERRA-2 reanalysis data were obtained from the Goddard Earth Sciences Data and Information Services Center. The ECMWF interim reanalysis data were obtained from the ECMWF data server.

Author information

Affiliations

Authors

Contributions

Y.J. and L.Z. designed the research. All authors collectively analysed the data. Y.J. prepared the figures and wrote the first draft of this paper. L.Z., C.J.T., A.R., W.H., Y.Y.L. and J.J. contributed to refining the ideas and revising this paper.

Corresponding author

Correspondence to Liming Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Climate Change thanks Hans Verbeeck, Jessica Baker and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figs. 1–11 and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhou, L., Tucker, C.J. et al. Widespread increase of boreal summer dry season length over the Congo rainforest. Nat. Clim. Chang. 9, 617–622 (2019). https://doi.org/10.1038/s41558-019-0512-y

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing