Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global assessment of primate vulnerability to extreme climatic events

An Author Correction to this article was published on 10 September 2019

This article has been updated


Climate-change-driven alterations in the extent and intensity of extreme weather events may have catastrophic consequences for primate populations. Using a trait-based approach, we assessed the vulnerability of the world’s 607 primate taxa to effects of cyclones and droughts—two types of extreme climatic events that are expected to increase and/or intensify in the future. We found that 16% of primate taxa are vulnerable to cyclones, particularly taxa in Madagascar; 22% are vulnerable to droughts, mainly taxa in the Malaysia Peninsula, North Borneo, Sumatra and tropical moist forests of West Africa. These findings will help with prioritization of primate conservation efforts. They indicate a need for increased efforts to investigate the context-specific mechanisms underpinning primates’ vulnerability to extreme climatic events.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Distribution of vulnerable primate taxa and number of taxa in each vulnerability category.
Fig. 2: Distribution and number of primate taxa that are threatened and vulnerable to cyclones and droughts.
Fig. 3: A framework for assessing intrinsic susceptibility of primate taxa under cyclone and drought impacts.

Data availability

The data supporting the findings of this study are available through the references provided within the article or the supplemental materials. Additional data related to this paper may be requested from the corresponding author.

Change history

  • 10 September 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Lambert, J. E. & Garber, P. A. Evolutionary and ecological implications of primate seed dispersal. Am. J. Primatol. 45, 9–28 (1998).

    CAS  Article  Google Scholar 

  2. 2.

    Nuñez‐Iturri, G. & Howe, H. F. Bushmeat and the fate of trees with seeds dispersed by large primates in a lowland rain forest in western Amazonia. Biotropica 39, 348–354 (2007).

    Article  Google Scholar 

  3. 3.

    Wich, S. A. & Marshall, A. J. An Introduction to Primate Conservation (Oxford Univ. Press, 2016).

  4. 4.

    Cowlishaw, G. & Dunbar, R. I. Primate Conservation Biology (Univ. of Chicago Press, 2000)

  5. 5.

    Estrada, A. et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. 3, e1600946 (2017).

    Article  Google Scholar 

  6. 6.

    Ameca y Juárez, E. I., Mace, G. M., Cowlishaw, G. & Pettorelli, N. Natural population die-offs: causes and consequences for terrestrial mammals. Trends Ecol. Evol. 27, 272–277 (2012).

    Article  Google Scholar 

  7. 7.

    Anderson, S. C., Branch, T. A., Cooper, A. B. & Dulvy, N. K. Black-swan events in animal populations. Proc. Natl Acad. Sci. USA 114, 3252–3257 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Ameca y Juárez, E. I., Mace, G. M., Cowlishaw, G., Cornforth, W. A. & Pettorelli, N. Assessing exposure to extreme climatic events for terrestrial mammals. Conserv. Lett. 6, 145–153 (2013).

    Article  Google Scholar 

  9. 9.

    Wiederholt, R. & Post, E. Tropical warming and the dynamics of endangered primates. Biol. Lett. 6, 257–260 (2010).

    Article  Google Scholar 

  10. 10.

    Wiederholt, R. & Post, E. Birth seasonality and offspring production in threatened neotropical primates related to climate. Glob. Change Biol. 17, 3035–3045 (2011).

    Article  Google Scholar 

  11. 11.

    Campos, F. A., Jack, K. M. & Fedigan, L. M. Climate oscillations and conservation measures regulate white-faced capuchin population growth and demography in a regenerating tropical dry forest in Costa Rica. Biol. Conserv. 186, 204–213 (2015).

    Article  Google Scholar 

  12. 12.

    Dunham, A. E., Erhart, E. M., Overdorff, D. J. & Wright, P. C. Evaluating effects of deforestation, hunting, and El Niño events on a threatened lemur. Biol. Conserv. 141, 287–297 (2008).

    Article  Google Scholar 

  13. 13.

    Dunham, A. E., Erhart, E. M. & Wright, P. C. Global climate cycles and cyclones: consequences for rainfall patterns and lemur reproduction in southeastern Madagascar. Glob. Change Biol. 17, 219–227 (2011).

    Article  Google Scholar 

  14. 14.

    Tarnaud, L. & Simmen, B. A major increase in the population of brown lemurs on Mayotte since the decline reported in 1987. Oryx 36, 297–300 (2002).

    Article  Google Scholar 

  15. 15.

    Waite, T. A., Chhangani, A. K., Campbell, L. G., Rajpurohit, L. S. & Mohnot, S. M. Sanctuary in the city: urban monkeys buffered against catastrophic die-off during ENSO-related drought. EcoHealth 4, 278–286 (2007).

    Article  Google Scholar 

  16. 16.

    Diez, J. M. et al. Will extreme climatic events facilitate biological invasions? Front. Ecol. Environ. 10, 249–257 (2012).

    Article  Google Scholar 

  17. 17.

    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78 (2013).

    Article  Google Scholar 

  18. 18.

    Foden, W. B. & Young, B. E. IUCN Guidelines for Assessing Species’ Vulnerability to Climate Change (IUCN Species Survival Commission, 2017).

  19. 19.

    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).

    Article  Google Scholar 

  20. 20.

    Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205 (2017).

    Article  Google Scholar 

  22. 22.

    Small-Lorenz, S. L., Culp, L. A., Ryder, T. B., Will, T. C. & Marra, P. P. A blind spot in climate change vulnerability assessments. Nat. Clim. Change 3, 91 (2013).

    Article  Google Scholar 

  23. 23.

    The IUCN Red List of Threatened Species (IUCN, accessed 5 January 2017);

  24. 24.

    Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. and Meyer, L. A.) (IPCC, 2014).

  25. 25.

    Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3, 157–163 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    Bender, M. A. et al. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327, 454–458 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    Behie, A. M., Kutz, S. & Pavelka, M. S. Cascading effects of climate change: do hurricane‐damaged forests increase risk of exposure to parasites? Biotropica 46, 25–31 (2014).

    Article  Google Scholar 

  29. 29.

    Fardi, S., Sauther, M. L., Cuozzo, F. P., Jacky, I. A. & Bernstein, R. M. The effect of extreme weather events on hair cortisol and body weight in a wild ring‐tailed lemur population (Lemur catta) in southwestern Madagascar. Am. J. Primatol. 80, e22731 (2018).

    Article  CAS  Google Scholar 

  30. 30.

    Ameca y Juárez, E. I., Ellis, E. A. & Rodríguez-Luna, E. Quantifying the severity of hurricanes on extinction probabilities of a primate population: insights into “Island” extirpations. Am. J. Primatol. 77, 786–800 (2015).

    Article  Google Scholar 

  31. 31.

    Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).

    Article  Google Scholar 

  32. 32.

    Sheffield, J., Wood, E. F. & Roderick, M. L. Little change in global drought over the past 60 years. Nature 491, 435–438 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    Article  Google Scholar 

  34. 34.

    Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2014).

    Article  Google Scholar 

  35. 35.

    Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl Acad. Sci. USA 108, 1474–1478 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    Ingram, J. C. & Dawson, T. P. Climate change impacts and vegetation response on the island of Madagascar. Philos. Trans. R. Soc. Lond. A 363, 55–59 (2005).

    Article  Google Scholar 

  37. 37.

    Harper, G. J., Steininger, M. K., Tucker, C. J., Juhn, D. & Hawkins, F. Fifty years of deforestation and forest fragmentation in Madagascar. Environ. Conserv. 34, 325–333 (2007).

    Article  Google Scholar 

  38. 38.

    Schwitzer, C. et al. Averting lemur extinctions amid Madagascar’s political crisis. Science 343, 842–843 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Woodruff, D. S. Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodivers. Conserv. 19, 919–941 (2010).

    Article  Google Scholar 

  40. 40.

    Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 11, e0159668 (2016).

    Article  CAS  Google Scholar 

  41. 41.

    Swarna Nantha, H. & Tisdell, C. The orangutan–oil palm conflict: economic constraints and opportunities for conservation. Biodivers. Conserv. 18, 487–502 (2009).

    Article  Google Scholar 

  42. 42.

    Meijaard, E. et al. Quantifying killing of orangutans and human–orangutan conflict in Kalimantan, Indonesia. PLoS ONE 6, e27491 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    Maron, M., McAlpine, C. A., Watson, J. E. M., Maxwell, S. & Barnard, P. Climate-induced resource bottlenecks exacerbate species vulnerability: a review. Divers. Distrib. 21, 731–743 (2015).

    Article  Google Scholar 

  44. 44.

    Dalerum, F. Identifying the role of conservation biology for solving the environmental crisis. Ambio 43, 839–846 (2014).

    Article  Google Scholar 

  45. 45.

    Ghil, M. et al. Extreme events: dynamics, statistics and prediction. Nonlin. Process. Geophys. 18, 295–350 (2011).

    Article  Google Scholar 

  46. 46.

    Seneviratne, S. et al. in Managing the risks of extreme events and disasters to advance climate change adaptation: IPCC Special Report (eds Field, C. B. et al.) (IPCC, Cambridge Univ. Press, 2012).

  47. 47.

    Cardillo, M. et al. The predictability of extinction: biological and external correlates of decline in mammals. Proc. R. Soc. Lond. B 275, 1441–1448 (2008).

    Article  Google Scholar 

  48. 48.

    Cowlishaw, G., Pettifor, R. A. & Isaac, N. J. High variability in patterns of population decline: the importance of local processes in species extinctions. Proc. R. Soc. Lond. B 276, 63–69 (2008).

    Article  Google Scholar 

  49. 49.

    Böhm, M. et al. Hot and bothered: using trait-based approaches to assess climate change vulnerability in reptiles. Biol. Conserv. 204, 32–41 (2016).

    Article  Google Scholar 

  50. 50.

    Chown, S. L. Temporal biodiversity change in transformed landscapes: a southern African perspective. Philos. Trans. R. Soc. Lond. B 365, 3729–3742 (2010).

    Article  Google Scholar 

  51. 51.

    Encyclopedia of Life (EOL, accessed 20 January 2017);

  52. 52.

    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).

    Article  Google Scholar 

  53. 53.

    Myers, P. et al. The Animal Diversity Web (Univ. Michigan, accessed 10 January 2017);

  54. 54.

    Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. Lond. B 267, 1947–1952 (2000).

    CAS  Article  Google Scholar 

  55. 55.

    Davies, R. G. et al. Human impacts and the global distribution of extinction risk. Proc. R. Soc. Lond. B 273, 2127–2133 (2006).

    Article  Google Scholar 

  56. 56.

    Woodward, G. et al. Climate change impacts in multispecies systems: drought alters food web size structure in a field experiment. Philos. Trans. R. Soc. Lond. B 367, 2990–2997 (2012).

    Article  Google Scholar 

  57. 57.

    Carbone, C., Cowlishaw, G., Isaac, N. J. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2004).

    Article  Google Scholar 

  58. 58.

    Stenseth, N. C. & Lidicker, W. Z. Z. J. in Animal Dispersal: Small Mammals as a Model (eds Stenseth, N. C. & Lidicker Jr, W. Z. Z.) 4–20 (Chapman & Hall, 1992).

  59. 59.

    Cowlishaw, G. & Dunbar, R. I. Primate Conservation Biology (Univ. of Chicago Press, 2000).

  60. 60.

    Campos, F. A. & Fedigan, L. M. Behavioral adaptations to heat stress and water scarcity in white-faced capuchins (Cebus capucinus) in Santa Rosa National Park, Costa Rica. Am. J. Phys. Anthropol. 138, 101–111 (2009).

    Article  Google Scholar 

  61. 61.

    Aristizabal, J. F., Lévêque, L., Chapman, C. A. & Serio-Silva, J. C. Impacts of temperature on behaviour of the Mexican endangered black howler monkey Alouatta pigra Lawrence, 1933 (Primates: Atelidae) in a fragmented landscape. Acta Zool. Bulg. 70, 377–382 (2018).

    Google Scholar 

  62. 62.

    Levy, O., Dayan, T., Porter, W. P. and Kronfeld-Schor, N. Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol. Monogr. 89, e01334 (2018).

    Article  Google Scholar 

  63. 63.

    Russell, G. J., Brooks, T. M., McKinney, M. M. & Anderson, C. G. Present and future taxonomic selectivity in bird and mammal extinctions. Conserv. Biol. 12, 1365–1376 (1998).

    Article  Google Scholar 

  64. 64.

    Cardillo, M., Mace, G. M., Gittleman, J. L. & Purvis, A. Latent extinction risk and the future battlegrounds of mammal conservation. Proc. Natl Acad. Sci. USA 103, 4157–4161 (2006).

    CAS  Article  Google Scholar 

  65. 65.

    Gould, L., Sussman, R. W. & Sauther, M. L. Natural disasters and primate populations: the effects of a 2-year drought on a naturally occurring population of ring-tailed lemurs (Lemur catta) in southwestern Madagascar. Int. J. Primatol. 20, 69–84 (1999).

    Article  Google Scholar 

  66. 66.

    Arroyo-Rodríguez, V., Dias, P. A. D. & Cristóbal Cristóbal-Azkarate, J. in Perspectivas en Primatología Mexicana 103–116 (Universidad Juárez Autónoma de Tabasco, 2011).

  67. 67.

    Soulè, Michael E. in Genetics and Conservation (eds Schonewald-Cox, C. M. et al.) 111–124 (Benjamin Cummings, 1983).

  68. 68.

    Fimbel, C. Ecological correlates of species success in modified habitats may be disturbance-specific and site-specific—the primates of Tiwai Island. Conserv. Biol. 8, 106–113 (1994).

    Article  Google Scholar 

  69. 69.

    Rowland, L. et al. Shock and stabilisation following long‐term drought in tropical forest from 15 years of litterfall dynamics. J. Ecol. 106, 1673–1682 (2018).

    Article  Google Scholar 

  70. 70.

    Sánchez-Galván, I. R., Díaz-Castelazo, C. & Rico-Gray, V. Effect of Hurricane Karl on a plant–ant network occurring in coastal Veracruz, Mexico. J. Trop. Ecol. 28, 603–609 (2012).

    Article  Google Scholar 

  71. 71.

    Tutin, C. E., Ham, R. M., White, L. J. & Harrison, M. J. The primate community of the Lopé Reserve, Gabon: diets, responses to fruits scarcity and effects on biomass. Am. J. Primatol. 42, 1–24 (1997).

    CAS  Article  Google Scholar 

  72. 72.

    Behie, A. M., Pavelka, M. S., Hartwell, K., Champion, J. & Notman, H. in Primate Research and Conservation in the Anthropocene, Vol. 82 (eds Behie, A. M. et al.) Ch. 13 (Cambridge Univ. Press, 2019).

  73. 73.

    Struhsaker, T. T. A recensus of vervet monkeys in the Masai–Amboseli Game Reserve, Kenya. Ecology 54, 930–932 (1973).

    Article  Google Scholar 

  74. 74.

    Berenstain, L. Responses of long-tailed macaques to drought and fire in eastern Borneo: a preliminary report. Biotropica 18, 257–262 (1986).

    Article  Google Scholar 

  75. 75.

    Bicca-Marques, J. C., Muhle, C. B., Prates, H. M., Oliveira, S. G. & Calegaro-Marques, C. Habitat impoverishment and egg predation by Alouatta caraya. Int. J. Primatol. 30, 743–748 (2009).

    Article  Google Scholar 

  76. 76.

    Brown, A. D. & Zunino, G. E. Dietary variability in Cebus apella in extreme habitats: evidence for adaptability. Folia Primatol. 54, 187–195 (1990).

    CAS  Article  Google Scholar 

  77. 77.

    IUCN. Habitats Classification Scheme, v.3.1 (IUCN, accessed February 2017);

  78. 78.

    Fisher, D. O., Blomberg, S. P. & Owens, I. P. F. Extrinsic versus intrinsic factors in the decline and extinction of Australian marsupials. Proc. R. Soc. Lond. B 270, 1801–1808 (2003).

    Article  Google Scholar 

  79. 79.

    Brashares, J. S. Ecological, behavioural and life-history correlates of mammal extinctions in West Africa. Conserv. Biol. 17, 733–743 (2003).

    Article  Google Scholar 

  80. 80.

    Harcourt, A. H., Coppeto, S. A. & Parks, S. A. Rarity, specialization and extinction in primates. J. Biogeogr. 29, 445–456 (2002).

    Article  Google Scholar 

  81. 81.

    Pavelka, M. S., Brusselers, O. T., Nowak, D. & Behie, A. M. Population reduction and social disorganization in Alouatta pigra following a hurricane. Int. J. Primatol. 24, 1037–1055 (2003).

    Article  Google Scholar 

  82. 82.

    Campbell, C. J. et al. Terrestrial behavior of Ateles spp. Int. J. Primatol. 26, 1039–1051 (2005).

    Article  Google Scholar 

  83. 83.

    Harcourt, A. H. in Behavioral Ecology and Conservation (ed. Caro, T. M.) 56–79 (Oxford Univ. Press, 1998).

  84. 84.

    Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).

    CAS  Article  Google Scholar 

  85. 85.

    Travis, J. M. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).

    Article  Google Scholar 

  86. 86.

    Whitmee, S. & Orme, C. D. L. Predicting dispersal distance in mammals: a trait‐based approach. J. Anim. Ecol. 82, 211–221 (2013).

    Article  Google Scholar 

  87. 87.

    Schaffner, C. M., Rebecchini, L., Ramos-Fernandez, G., Vick, L. G. & Aureli, F. Spider monkeys (Ateles geoffroyi yucatenensis) cope with the negative consequences of hurricanes through changes in diet, activity budget, and fission–fusion dynamics. Int. J. Primatol. 33, 922–936 (2012).

    Article  Google Scholar 

  88. 88.

    Wilson, D. E. & Reeder, D. M. (eds) Mammal Species of the World: A Taxonomic and Geographic Reference, Vol. 1 (JHU Press, 2005).

  89. 89.

    Presence, Seasonal and Origin Attributes for Species Ranges (IUCN, accessed 5 January 2017);

  90. 90.

    Roskov Y. et al. Catalogue of Life: 2017 Annual Checklist (Species 2000, ITIS, accessed 7 January 2017);

  91. 91.

    Fan, P. et al. Description of a new species of Hoolock gibbon (Primates: Hylobatidae) based on integrative taxonomy. Am. J. Primatol. 79, e22631 (2017).

    Article  Google Scholar 

  92. 92.

    Global Risk Data Platform: Tropical Cyclones Windspeed Buffers 1970–2015 (UNEP/GRID, accessed 10 February 2017);

  93. 93.

    Schott, T. et al. in The Saffir–Simpson Hurricane Wind Scale, 1–4 (NOAA/National Weather Service, 2012)

  94. 94.

    Pacifici, M. et al. Generation length for mammals. Nat. Conserv. 5, 89 (2013).

    Article  Google Scholar 

  95. 95.

    O’Grady, J. J., Reed, D. H., Brook, B. W. & Frankham, R. Extinction risk scales better to generations than to years. Anim. Conserv. 11, 442–451 (2008).

    Article  Google Scholar 

  96. 96.

    Schneider, U. et al. Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere 8, 52 (2017).

    Article  Google Scholar 

  97. 97.

    WMO Standardized Precipitation Index User Guide (World Meteorological Organization, 2012).

  98. 98.

    McKee, T., Doesken, N. & Kleist, J. The relationship of drought frequency and duration to time scales. In Proc. 8th Conf. Appl. Climatol. 179–183 (American Meteorological Society, 1993).

  99. 99.

    Pavelka, M. S. & Chapman, C. A. in New Perspectives in the Study of Mesoamerican Primates 143–163 (Springer, 2006)

  100. 100.

    Wunderle, J. M. Jr, Lodge, D. J. & Waide, R. B. Short-term effects of Hurricane Gilbert on terrestrial bird populations on Jamaica. Auk 109, 148–166 (1992).

    Article  Google Scholar 

  101. 101.

    Alencar, A., Nepstad, D. & Diaz, M. C. V. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interact. 10, 1–17 (2006).

    Article  Google Scholar 

  102. 102.

    AghaKouchak, A., Cheng, L., Mazdiyasni, O. & Farahmand, A. Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys. Res. Lett. 41, 8847–8852 (2014).

    Article  Google Scholar 

  103. 103.

    Lau, W. K. & Kim, K.-M. The 2010 Pakistan flood and Russian heat wave: teleconnection of hydrometeorological extremes. J. Hydrometeorol. 13, 392–403 (2012).

    Article  Google Scholar 

  104. 104.

    Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).

    Article  Google Scholar 

  105. 105.

    Thomas, C. D. et al. A framework for assessing threats and benefits to species responding to climate change. Methods Ecol. Evol. 2, 125–142 (2011).

    Article  Google Scholar 

Download references

Author information




L.Z. and E.I.A. conceived and designed the study. G.M.M., G.C., N.P. and W.F. contributed in the design of the vulnerability framework proposed by L.Z. and E.I.A. L.Z., E.I.A. and G.C. reviewed and collected data. L.Z. analysed data and all authors contributed greatly to the discussion of results. L.Z. wrote the initial draft of this manuscript and all authors contributed on improvements of the manuscript and agreed the final version to be published.

Corresponding author

Correspondence to Eric I. Ameca.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Climate Change thanks Amanda Korstjens and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4 and Supplementary Figures 1–3.

Supplementary Data 1

Scores of the traits used for assessing susceptibility to cyclones and droughts.

Supplementary Data 2

Vulnerability and threatened categories in IUCN Red List of assessed primate taxa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ameca, E.I., Cowlishaw, G. et al. Global assessment of primate vulnerability to extreme climatic events. Nat. Clim. Chang. 9, 554–561 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing