Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases


As exemplified by El Niño, the tropical Pacific Ocean strongly influences regional climates and their variability worldwide1,2,3. It also regulates the rate of global temperature rise in response to rising GHGs4. The tropical Pacific Ocean response to rising GHGs impacts all of the world’s population. State-of-the-art climate models predict that rising GHGs reduce the west-to-east warm-to-cool sea surface temperature gradient across the equatorial Pacific5. In nature, however, the gradient has strengthened in recent decades as GHG concentrations have risen sharply5. This stark discrepancy between models and observations has troubled the climate research community for two decades. Here, by returning to the fundamental dynamics and thermodynamics of the tropical ocean–atmosphere system, and avoiding sources of model bias, we show that a parsimonious formulation of tropical Pacific dynamics yields a response that is consistent with observations and attributable to rising GHGs. We use the same dynamics to show that the erroneous warming in state-of-the-art models is a consequence of the cold bias of their equatorial cold tongues. The failure of state-of-the-art models to capture the correct response introduces critical error into their projections of climate change in the many regions sensitive to tropical Pacific sea surface temperatures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: SST trends over 1958–2017.
Fig. 2: Atmosphere trends over 1958–2017.
Fig. 3: Results from the coupled atmosphere and ocean model simulations.
Fig. 4: Trends in thermocline depth (20 °C isotherm) over 1958–2017.
Fig. 5: Coupled model trends over 1958–2017, and attribution of erroneous trends in CMIP5 models to model bias.

Data availability

All data used or analysed in this study, or generated by other groups and organizations, are publicly available at the links provided in the Methods. Data from our model simulations are available at

Code availability

The Python code for the atmosphere model is in a Juypter Notebook and is available on request. The ocean model code is built on legacy Fortran 90 and C code, and a TAR file of the source code can be made available on request.


  1. 1.

    Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97, 162–172 (1969).

    Article  Google Scholar 

  2. 2.

    Dai, A. & Wigley, T. M. L. Global patterns of ENSO-induced precipitation. Geophys. Res. Lett. 27, 1283–1286 (2000).

    Article  Google Scholar 

  3. 3.

    Trenberth, K. E. et al. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperature. J. Geophys. Res. 103, 14291–14324 (1998).

    Article  Google Scholar 

  4. 4.

    Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    Coats, S. & Karnauskas, K. B. Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett. 44, 9928–9937 (2017).

    Article  Google Scholar 

  6. 6.

    Zebiak, S. E. & Cane, M. A. A model El Niño–Southern Oscillation. Mon. Weather Rev. 115, 2262–2278 (1987).

    Article  Google Scholar 

  7. 7.

    Delworth, T. L., Zeng, F., Rosati, A., Vecchi, G. A. & Wittenberg, A. A link between the hiatus in global warming and North American drought. J. Clim. 28, 3834–3845 (2015).

    Article  Google Scholar 

  8. 8.

    Yang, W., Seager, R., Cane, M. A. & Lyon, B. The East African long rains in observations and models. J. Clim. 27, 7186–7202 (2014).

    Google Scholar 

  9. 9.

    Clement, A. C., Seager, R., Cane, M. A. & Zebiak, S. E. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996).

    Article  Google Scholar 

  10. 10.

    Cane, M. A. et al. Twentieth century sea surface temperature trends. Science 275, 957–960 (1997).

    CAS  Article  Google Scholar 

  11. 11.

    Knutson, T. R. & Manabe, S. Time-mean response over the tropical pacific to increased CO2 in a coupled ocean–atmosphere model. J. Clim. 8, 2181–2199 (1995).

    Article  Google Scholar 

  12. 12.

    Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Article  Google Scholar 

  13. 13.

    Li, G., Xie, S.-P., Du, Y. & Luo, Y. Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: the warming pattern in CMIP5 multi-model ensemble. Clim. Dynam. 47, 3817–3831 (2016).

    Article  Google Scholar 

  14. 14.

    Li, G. & Xie, S. P. Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J. Clim. 27, 1765–1780 (2014).

    Article  Google Scholar 

  15. 15.

    Luo, J.-J., Wang, G. & Dommenget, D. May common model biases reduce CMIP5’s ability to simulate the recent Pacific La Niña-like cooling? Clim. Dynam. 50, 1335–1351 (2018).

    Article  Google Scholar 

  16. 16.

    Gill, A. E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteor. Soc. 106, 447–462 (1980).

    Article  Google Scholar 

  17. 17.

    Blumenthal., M. B. & Cane, M. A. Accounting for parameter uncertainties in model verification: an illustration with tropical sea surface temperature. J. Phys. Oceanogr. 19, 815–830 (1989).

    Article  Google Scholar 

  18. 18.

    Uppala, S. M. et al. The ERA-40 re-analysis. Q. J. R. Meteor. Soc. 131, 2961–3012 (2005).

    Article  Google Scholar 

  19. 19.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteor. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  20. 20.

    Balmaseda, M. A., Mogensen, K. & Weaver, A. T. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteor. Soc. 139, 1132–1161 (2013).

    Article  Google Scholar 

  21. 21.

    Chiang, J. C. H., Zebiak, S. E. & Cane, M. A. Relative roles of elevated heating and surface temperature gradients in driving anomalous surface winds over tropical oceans. J. Clim. 58, 1371–1394 (2001).

    Google Scholar 

  22. 22.

    Emile-Geay, J. & Cane, M. A. Pacific decadal variability in the view of linear equatorial wave theory. J. Phys. Oceanogr. 39, 203–219 (2009).

    Article  Google Scholar 

  23. 23.

    Hu, S. & Federov, A. V. Cross-equatorial winds control El Niño diversity and change. Nat. Clim. Change 8, 798–802 (2018).

    Article  Google Scholar 

  24. 24.

    Burls, N. J. & Federov, A. V. What controls the mean East–West sea surface temperature gradient in the equatorial Pacific: the role of cloud albedo. J. Clim. 27, 2757–2778 (2014).

    Article  Google Scholar 

  25. 25.

    Seager, R., Naik, N. & Vecchi, G. A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle response to global warming. J. Clim. 23, 4651–4668 (2010).

    Article  Google Scholar 

  26. 26.

    Wu, Y. & Polvani, L. M. P. Contrasting short- and long-term projections of the hydrological cycle in the southern extratropics. J. Clim. 28, 5845–5856 (2015).

    Article  Google Scholar 

  27. 27.

    Davey, M. K. & Gill, A. E. Experiments on tropical circulation with a simple moist model. Q. J. R. Meteor. Soc. 113, 1237–1269 (1987).

    Article  Google Scholar 

  28. 28.

    Zebiak, S. E. Atmospheric convergence feedback in a simple model for El Niño. Mon. Weather Rev. 114, 1263–1271 (1986).

    Article  Google Scholar 

  29. 29.

    Seager, R. A simple model of the climatology and variability of the low-level wind field in the tropics. J. Clim. 4, 164–179 (1991).

    Article  Google Scholar 

  30. 30.

    Seager, R., Zebiak, S. E. & Cane, M. B. A model of the tropical Pacific sea surface temperature climatology. J. Geophys. Res. 93, 1265–1280 (1988).

    Article  Google Scholar 

  31. 31.

    Israeli, M., Naik, N. A. & Cane, M. A. An unconditionally stable scheme for the shallow water equations. Mon. Weather Rev. 128, 810–823 (2000).

    Article  Google Scholar 

  32. 32.

    Ishii, M. & Kimoto, M. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65, 287–299 (2009).

    Article  Google Scholar 

  33. 33.

    Carton, J. A. & Giese, B. S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev. 136, 2999–3017 (2008).

    Article  Google Scholar 

  34. 34.

    Good, S. A., Martin, M. J. & Rayner, N. A. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 118, 6704–6716 (2013).

    Article  Google Scholar 

  35. 35.

    Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteor. Soc. Jpn 93, 5–48 (2015).

    Article  Google Scholar 

  36. 36.

    Compo, G. P. et al. The twentieth century reanalysis project. Q. J. R. Meteor. Soc. 137, 1–28 (2010).

    Article  Google Scholar 

  37. 37.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experimental design. Bull. Am. Meteor. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  38. 38.

    Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble Project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteor. Soc. 96, 1333–1349 (2015).

    Article  Google Scholar 

  39. 39.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  40. 40.

    Kistler, R. et al. The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull. Am. Meteor. Soc. 82, 247–268 (2001).

    Article  Google Scholar 

  41. 41.

    Huang, B. et al. Extended Reconstructed Sea Surface Temperature, version 4 (ERSSTv5): upgrades, validations and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article  Google Scholar 

Download references


This work was supported by NSF award OCE 1657209 and a grant from World Surf League P.U.R.E. through Columbia University’s Center for Climate and Life. We thank R. Miller, B. Fox-Kemper, T. Shepherd, R. Chadwick, J. Smerdon, P. Williams and I. Simpson for useful discussions.

Author information




R.S. conceived of the study and directed the research. All authors designed the experiments. R.S. and M.C. designed the atmosphere and ocean thermodynamic models. N.H. and M.C. designed the numerical methods for solution, with assistance from R.S. N.H. wrote the new model codes, implemented the ocean model and conducted the modelling. D.-E.L. and N.H. led the analysis of ocean and atmosphere data. D.-E.L. conducted experiments with the ocean model to interpret the results. R.S. wrote the paper, with all authors contributing advice on content and wording.

Corresponding author

Correspondence to Richard Seager.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Climate Change thanks Natalie Burl and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seager, R., Cane, M., Henderson, N. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Chang. 9, 517–522 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing