Review Article | Published:

Sea-level driven land conversion and the formation of ghost forests


Ghost forests created by the submergence of low-lying land are one of the most striking indicators of climate change along the Atlantic coast of North America. Although dead trees at the margin of estuaries were described as early as 1910, recent research has led to new recognition that the submergence of terrestrial land is geographically widespread, ecologically and economically important, and globally relevant to the survival of coastal wetlands in the face of rapid sea level rise. This emerging understanding has in turn generated widespread interest in the physical and ecological mechanisms influencing the extent and pace of upland to wetland conversion. Choices between defending the coast from sea level rise and facilitating ecosystem transgression will play a fundamental role in determining the fate and function of low-lying coastal land.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Kemp, A. C. et al. Climate related sea-level variations over the past two millennia. Proc. Natl Acad. Sci. USA 108, 11017–11022 (2011).

  2. 2.

    Hopkinson, C. S., Lugo, A. E., Alber, M., Covich, A. P. & Van Bloem, S. J. Forecasting effects of sea-level rise and windstorms on coastal and inland ecosystems. Front. Ecol. Environ. 6, 255–263 (2008).

  3. 3.

    Neumann, B., Vafedis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding: a global assessment. PLoS ONE 10, e0118571 (2015).

  4. 4.

    White, E. & Kaplan, D. Restore or retreat? Saltwater intrusion and water management in coastal wetlands. Ecosyst. Health Sust. 3, e01258 (2017).

  5. 5.

    Horton, B. P., Rahmstorf, S., Engelhart, S. E. & Kemp, A. C. Expert assessment of sea-level rise by AD 2100 and AD 2300. Quat. Sci. Rev. 84, 1–6 (2014).

  6. 6.

    Rasmussen, D. J. et al. Extreme sea level implications of 1.5° C, 2.0° C, and 2.5° C temperature stabilization targets in the 21st and 22nd centuries. Environ. Res. Lett. 13, 034040 (2018).

  7. 7.

    Morris, J. T., Edwards, J., Crooks, S. & Reyes, E. in Recarbonization of the biosphere: Ecosystems and the Global Carbon Cycle (eds Lal, R. et al.) 517–531 (Springer, 2012).

  8. 8.

    Haer, T., Kalnay, E., Kearney, M. & Moll, H. Relative sea-level rise and the conterminous United States: consequences of potential land inundation in terms of population at risk and GDP loss. Glob. Environ. Chang. 23, 1627–1636 (2013).

  9. 9.

    Milliman, J. D., Broadus, J. M. & Gable, F. Environmental and economic implications of rising sea level and subsiding deltas: the Nile and Bengal examples. AMBIO 18, 340–345 (1989).

  10. 10.

    Bin, O. & Polasky, S. Evidence on the amenity value of wetlands in a rural setting. Am. J. Agric. Econ. 37, 589–602 (2005).

  11. 11.

    Field, C. R., Dayer, A. A. & Elphick, C. S. Social factors can influence ecosystem migration. Proc. Natl Acad. Sci. USA 114, 9134–9139 (2017). Landowner surveys indicate resistance to incentive programs allowing for marsh migration on private property.

  12. 12.

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

  13. 13.

    Feagin, R. A., Martinez, M. L., Mendoza-Gonzalez, G. & Costanza, R. Salt marsh zonal migration and ecosystem service change in response to global sea level rise: a case study from an urban region. Ecol. Soc. 15, 14 (2010).

  14. 14.

    Shreve, F., Chrysler, M. A., Blodgett, F. H. & Besley, F. W. The plant life of Maryland (Johns Hopkins Press, 1910).

  15. 15.

    Robichaud, A. & Begin, Y. The effects of storms and sea level rise on a coastal forest margin in New Brunswick, Eastern Canada. J. Coast. Res. 13, 429–439 (1997).

  16. 16.

    Smith, J. A. The role of Phragmites australis in mediating inland salt marsh migration in a mid-Atlantic estuary. PLoS ONE 8, e65091 (2013). Invasive Phragmites is the dominant species in submerged forests.

  17. 17.

    Raabe, E. A. & Stumpf, R. P. Expansion of tidal marsh in response to sea-level rise: Gulf Coast of Florida, USA. Estuaries Coasts 39, 145–157 (2016).

  18. 18.

    Langston, A. K., Kaplan, D. A. & Putz, F. E. A casualty of climate change? Loss of freshwater forest islands on Florida’s Gulf Coast. Glob. Chang. Biol. 23, 5383–5397 (2017).

  19. 19.

    Schieder, N. W., Walters, D. C. & Kirwan, M. L. Massive upland to wetland conversion compensated for historical marsh loss in Chesapeake Bay, USA. Estuaries Coasts 41, 940–951 (2018). 100,000 acres of marsh migration since 1850 in Chesapeake region.

  20. 20.

    Schieder, N. W. Reconstructing coastal forest retreat and marsh migration response to historical sea level rise. MSc thesis, College of William and Mary, Virginia Institute of Marine Science (2017).

  21. 21.

    Conner, W. H., K. W. Krauss & T. W. Doyle. in Ecology of Tidal Freshwater Forested Wetlands of Southeastern United States (Conner, W. H. et al.) 223–253 (Springer, 2007).

  22. 22.

    Noe, G. B., Krauss, K. W., Lockaby, B. G., Conner, W. H. & Hupp, C. R. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands. Biogeochemistry 114, 225–244 (2013).

  23. 23.

    Fitzgerald, D. M., Fenster, M. S., Argow, B. A. & Buynevich, I. V. Coastal impacts due to sea-level rise. Annu. Rev. Earth Planet Sci. 36, 601–47 (2008).

  24. 24.

    Kirwan, M. L. & J. P. Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013). Proposes that wetland fate largely depends on how humans respond to sea level rise and influence transgression into adjacent uplands.

  25. 25.

    McKee, K. L., Cahoon, D. R. & Feller, I. C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 16, 545–556 (2007).

  26. 26.

    Rodriguez, A. B. et al. Oyster reefs can outpace sea-level rise. Nat. Clim. Change 4, 493–497 (2014).

  27. 27.

    Sallenger, A. H. S., Doran, K. S. & Howd, P. A. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nat. Clim. Change 2, 884–888 (2012).

  28. 28.

    Craft, C. B. Tidal freshwater forest accretion does not keep pace with sea level rise. Glob. Change Biol. 18, 3615–3623 (2012).

  29. 29.

    Ross, M. S., O’Brien, J. J. & Sternberg, S. L. Sea-level rise and the reduction in pine forests in the Florida Keys. Ecol. Appl. 4, 144–156 (1994).

  30. 30.

    Williams, K. et al. Sea-level rise and coastal forest retreat on the west coast of Florida, USA. Ecology 80, 2045–2063 (1999). Recruit failure precedes mortality of adult trees in retreating coastal forests.

  31. 31.

    Ma, Z. J. et al. Rethinking China’s new great wall. Science 346, 912–914 (2014).

  32. 32.

    Brinson, M. M., Christian, R. R. & Blum, L. K. Multiple states in the sea-level induced transition from terrestrial forest to estuary. Estuaries Coasts 18, 648–659 (1995). Changes in marsh size determined by the balance between erosion and forest retreat.

  33. 33.

    Wasson, K., Woolfolk, A. & Fresquez, C. Ecotones as indicators of changing environmental conditions: rapid migration of salt marsh-upland boundaries. Estuaries Coasts 36, 654–664 (2013).

  34. 34.

    Field, C. R., Gjerdrum, C. & Elphick, C. S. Forest resistance to sea-level rise prevents landward migration of tidal marsh. Biol. Conserv. 201, 363–369 (2016).

  35. 35.

    Hussein, A. H. Modeling of sea-level rise and deforestation in submerging coastal ultisols of Chesapeake Bay. Soil Sci. Soc. Am. J. 73, 185–196 (2009).

  36. 36.

    Clark, J. S. Coastal forest tree populations in a changing environment, Southeastern Long Island, New York. Ecol. Monogr. 56, 259–277 (1986).

  37. 37.

    Anisfeld, S. C., Cooper, K. R. & Kemp, A. C. Upslope development of a tidal marsh as a function of upland land use. Glob. Chang. Biol. 23, 755–766 (2017). Marsh vegetation develops rapidly in submerging suburban lawns and is not inhibited by mowing.

  38. 38.

    Bhattachan, A. et al. Sea level rise impacts on rural coastal social-ecological systems and the implications for decision making. Environ. Sci. Policy 90, 122–134 (2018).

  39. 39.

    Ardón, M., Morse, J. L., Colman, B. P. & Bernhardt, E. S. Drought-induced saltwater incursion leads to increased wetland nitrogen export. Glob. Chang. Biol. 19, 2976–2985 (2013).

  40. 40.

    Da Lio, C., Carol, E., Kruse, E., Teatini, P. & Tosi, L. Saltwater contamination in the managed low-lying farmland of the Venice coast, Italy: an assessment of vulnerability. Sci. Total Environ. 533, 356–369 (2015).

  41. 41.

    Vanderplank, S., Ezcurra, E., Delgadillo, J., Felger, R. & McDade, L. A. Conservation challenges in a threatened hotspot: agriculture and plant biodiversity losses in Baja California, Mexico. Biodivers. Conserv. 23, 2173–2182 (2014).

  42. 42.

    Khanom, T. Effect of salinity on food security in the context of interior coast of Bangladesh. Ocean Coast. Manag. 130, 205–212 (2016).

  43. 43.

    Kang, L., Ma, L. & Liu, Y. Evaluation of farmland losses from sea level rise and storm surges in the Pearl River Delta region under global climate change. J. Geogr. Sci. 26, 439–456 (2016).

  44. 44.

    Wassmann, R., Hien, N. X., Hoanh, C. T. & Tuong, T. P. Sea level rise affecting the Vietnamese Mekong Delta: water elevation in the flood season and implications for rice production. Climatic Chang. 66, 89–107 (2004).

  45. 45.

    Teobaldelli, M., Mencuccini, M. & Piussi, P. Water table salinity, rainfall and water use by umbrella pine trees (Pinus pinea L.). Plant Ecol. 171, 23–33 (2004).

  46. 46.

    Begin, Y. The effects of shoreline transgression on woody plants, Upper St. Lawrence Estuary, Québec. J. Coast. Res. 6, 815–827 (1990).

  47. 47.

    Fernandes, A., Rollinson, C. R., Kearney, W. S., Dietze, M. C. & Fagherazzi, S. Declining radial growth response of coastal forests to hurricanes and nor’easters. J. Geophys. Res. Biogeosci. 123, 82–849 (2018).

  48. 48.

    Kirwan, M. L., Kirwan, J. L. & Copenheaver, C. A. Dynamics of an estuarine forest and its response to rising sea level. J. Coast. Res. 23, 457–463 (2007).

  49. 49.

    Tate, A. S. & Battaglia, L. L. Community disassembly and reassembly following experimental storm surge and wrack application. J. Veg. Sci. 24, 46–57 (2013).

  50. 50.

    Gedan, K. B. & Fernández-Pascual, E. Salt marsh migration into salinized agricultural fields: a novel assembly of plant communities. J. Veg. Sci. (in press).

  51. 51.

    Pezeshki, S. R., DeLaune, R. D. & Patrick, W. H. Jr. Flooding and saltwater intrusion: potential effects on survival and productivity of wetland forests along the US Gulf Coast. Ecol. Manag. 33, 287–301 (1990).

  52. 52.

    Barrett-Lennard, E. G. The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant Soil 253, 35–54 (2003).

  53. 53.

    Conner, W. H. The effect of salinity and waterlogging on growth and survival of baldcypress and Chinese tallow seedlings. J. Coast. Res. 10, 1045–1049 (1994).

  54. 54.

    Desantis, L. R., Bhotika, S., Williams, K. & Putz, F. E. Sea-level rise and drought interactions accelerate forest decline on the Gulf Coast of Florida, USA. Glob. Chang. Biol. 13, 2349–2360 (2007).

  55. 55.

    Hosseini, M. K., Powell, A. A. & Bingham, I. J. Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Sci. Res. 12, 165–172 (2002).

  56. 56.

    Ashraf, M. & Waheed, A. Screening of local/exotic accessions of lentil (Lens culinaris Medic.) for salt tolerance at two growth stages. Plant Soil 128, 167–176 (1990).

  57. 57.

    Tolliver, K. S., Malxin, D. W. & Young, D. R. Freshwater and saltwater flooding response for woody species common to barrier island swales. Wetlands 17, 10–18 (1997).

  58. 58.

    Katerji, N., Mastrorilli, M., Lahmer, F. Z. & Oweis, T. Emergence rate as a potential indicator of crop salt-tolerance. Eur. J. Agron. 38, 1–9 (2012).

  59. 59.

    Tanji, K. K. & Kielen, N. C. Agricultural drainage water management in arid and semi-arid areas (FAO, 2002).

  60. 60.

    Chapman, E. L. et al. Hurricane Katrina impacts on forest trees of Louisiana’s Pearl River basin. Ecol. Manag. 256, 883–889 (2008).

  61. 61.

    Middleton, B. A. Differences in impacts of Hurricane Sandy on freshwater swamps on the Delmarva Peninsula, Mid-Atlantic Coast, USA. Ecol. Eng. 87, 62–70 (2016).

  62. 62.

    Yu, X. et al. Impact of topography on groundwater salinization due to ocean surge inundation. Water Resour. Res. 52, 5794–5812 (2016).

  63. 63.

    Elsayed, S. M. & Oumeraci, H. Modelling and mitigation of storm-induced saltwater intrusion: improvement of the resilience of coastal aquifers against marine floods by subsurface drainage. Environ. Model. Soft. 100, 252–277 (2018).

  64. 64.

    Poulter, B., Goodall, J. L. & Halpin, P. N. Applications of network analysis for adaptive management of artificial drainage systems in landscapes vulnerable to sea level rise. J. Hydrol. 357, 207–217 (2008).

  65. 65.

    Craft, C. et al. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front. Ecol. Environ. 7, 73–78 (2009).

  66. 66.

    Jordan, T. E. & Weller, D. E. Human contributions to terrestrial nitrogen flux. BioScience 46, 655–664 (1996).

  67. 67.

    Tully, K., Weissman, D., Wyner, W. J., Miller, J. & Jordan, T. E. Soils in transition: saltwater intrusion alters soil chemistry in agricultural fields. Biogeochemistry 142, 339–356 (2019).

  68. 68.

    Smith, V. H. & Schindler, D. W. Eutrophication science: where do we go from here? Trends Ecol. Evol. 24, 201–207 (2009).

  69. 69.

    Cook, C. E., McCluskey, A. M. & Chambers, R. M. Impacts of invasive Phragmites australis on diamondback terrapin nesting in Chesapeake Bay. Estuaries Coasts 41, 966–973 (2018).

  70. 70.

    Field, C. R. et al. High-resolution tide projections reveal extinction threshold in response to sea-level rise. Glob. Chang. Biol. 23, 2058–2070 (2017).

  71. 71.

    Spector, T. & Putz, F. E. Biomechanical plasticity facilitates invasion of maritime forests in the southern USA by Brazilian pepper (Schinus terebinthifolius). Biol. Invasions 8, 255–260 (2006).

  72. 72.

    Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R. & Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 6, 253–260 (2016).

  73. 73.

    Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563 (2015).

  74. 74.

    Crosby, S. C. et al. Salt marsh persistence is threatened by predicted sea-level rise. Estuar. Coast. Shelf Sci. 181, 93–99 (2016).

  75. 75.

    Dahl, T. E. & Stedman, S. M. Status and trends of wetlands in the coastal watersheds of the Conterminous United States 2004 to 2009 (US Department of the Interior, Fish and Wildlife Service & National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2013).

  76. 76.

    Kirwan, M. L., Walters, D. C., Reay, W. G. & Carr, J. A. Sea level driven marsh expansion in a coupled model of marsh erosion and migration. Geophys. Res. Lett. 43, 4366–4373 (2016).

  77. 77.

    Enwright, N. M., Griffith, K. T. & Osland, M. J. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise. Front. Ecol. Evol. 14, 307–316 (2016). Large areas of land are available for migration on the Gulf Coast, but with large geographic variability due to anthropogenic and topographic barriers.

  78. 78.

    Schile, L. M. et al. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLoS ONE 9, e88760 (2014).

  79. 79.

    Cadol, D., Elmore, A., Guinn, S., Engelhardt, K. A. M. & Sanders, G. Modeled tradeoffs between developed land protection and tidal habitat maintenance during rising sea levels. PLoS ONE 11, e0164875 (2016).

  80. 80.

    Torio, D. D. & Chmura, G. L. Assessing coastal squeeze of tidal wetlands. J. Coast. Res. 29, 1049–1061 (2013).

  81. 81.

    Thorne, K. et al. US Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 4, eaao3270 (2018).

  82. 82.

    Borchert, S. M., Osland, M. J., Enwright, N. M. & Griffith, K. T. Coastal wetland adaption to sea level rise: quantifying potential for landward migration and coastal squeeze. J. Appl. Ecol. 55, 2876–2877 (2018).

  83. 83.

    Schuerch, M. et al. Future response of global coastal wetlands to sea level rise. Nature 561, 231–234 (2018). Marsh loss is not inevitable but depends on anthropogenic barriers to marsh migration.

  84. 84.

    Temmerman, S. et al. Ecosystem-based coastal defense in the face of global change. Nature 504, 79–83 (2013).

  85. 85.

    Mitchell, M., Herman, J., Bilkovic, D. M. & Hershner, C. Marsh persistence under sea-level rise is controlled by multiple, geologically variable stressors. Ecosyst. Health Sustain. 3, 1379888 (2017).

  86. 86.

    Titus, J. G. et al. State and local governments plan for development of most land vulnerable to rising sea level along the US Atlantic coast. Environ. Res. Lett. 4, 044008 (2009).

  87. 87.

    Gray, A., Simenstad, C. A., Bottom, D. L. & Cornwell, T. J. Contrasting functional performance of juvenile salmon habitat in recovering wetlands of the Salmon River estuary, Oregon, USA. Restor. Ecol. 10, 514–526 (2002).

  88. 88.

    Williams, P. B. & Orr, M. K. Physical evolution of restored breached levee salt marshes in the San Francisco Bay estuary. Restor. Ecol. 10, 527–542 (2002).

  89. 89.

    Smith, J. A., Hafner, S. F. & Niles, L. J. The impact of past management practices on tidal marsh resilience to sea level rise in the Delaware Estuary. Ocean Coast. Manag. 149, 33–41 (2017).

  90. 90.

    Temmerman, S. & Kirwan, M. L. Building land with a rising sea. Science 349, 588–589 (2015).

  91. 91.

    Syvitski, J. P. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

  92. 92.

    Hinkel, J. et al. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl Acad. Sci. USA 111, 3292–3297 (2014).

  93. 93.

    Doyle, T. W. et al. Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise. Ecol. Manag. 259, 770–777 (2010).

  94. 94.

    Wong, P. P. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 5 (Cambridge Univ. Press, 2014).

  95. 95.

    Renaud, F. G. et al. Tipping from the Holocene to the Anthropocene: how threatened are major world deltas? Curr. Opin. Environ. Sustain. 5, 644–654 (2013).

  96. 96.

    Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).

  97. 97.

    Schmidt, J. P., Moore, R. & Alber, M. Integrating ecosystem services and local government finances into land use planning: a case study from coastal Georgia. Landsc. Urban Plan. 122, 56–67 (2014).

  98. 98.

    Voutsina, N., Seliskar, D. M. & Gallagher, J. L. The facilitative role of Kosteletzkya pentacarpos in transitioning coastal agricultural land to wetland during sea level rise. Estuaries Coasts 38, 35–44 (2015).

  99. 99.

    Neal, W. J., Pilkey, O. H., Cooper, J. A. G. & Long, N. J. Why coastal regulations fail. Ocean Coast. Manag. 156, 21–34 (2018).

  100. 100.

    Calil, J. et al. Aligning natural resource conservation and flood hazard mitigation in California. PLoS ONE 10, e0132651 (2015). Explores conservation and buyout programs for flood prone land.

Download references


This work was supported by the US National Science Foundation (Coastal SEES #1426981; LTER #1237733; CAREER #1654374), and the USDA Agricultural and Food Research Initiative Competitive Program (#2018-68002-27915). SouthWings provided a flight that helped motivate the work. This is contribution no. 3827 of the Virginia Institute of Marine Science.

Author information

Correspondence to Matthew L. Kirwan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Geographic distribution of sea-level driven land conversion in North America.

David Johnson (a), Kenneth W. Able (b), USDA Farm Service Agency (c) and Amy Langston, Virginia Institute of Marine Science (d)

Fig. 2: Accelerating forest retreat rates.
Fig. 3: Stages of ghost forest creation.
Fig. 4: Effect of topographic slope and human impacts on marsh size.
Fig. 5: Effect of flood defence strategy and land conversion on wetland size.

Anglian Coastal Monitoring Programme (a). Panel b adapted from ref. 83, Springer Nature Ltd

Fig. 6: Land conversion in the face of human barriers.