Asserting the climate benefits of the coal-to-gas shift across temporal and spatial scales


Reducing CO2 emissions through a shift from coal to natural gas power plants is a key strategy to support pathways for climate stabilization. However, methane leakage in the natural gas supply chain and emissions of a variety of climate forcers call the net benefits of this transition into question. Here, we integrated a life cycle inventory model with multiple global and regional emission metrics and investigated the impacts of representative coal and gas power plants in China, Germany, India and the United States. We found that the coal-to-gas shift is consistent with climate stabilization objectives for the next 50–100 years. Our finding is robust under a range of leakage rates and uncertainties in emissions data and metrics. It becomes conditional to the leakage rate in some locations only if we employ a set of metrics that essentially focus on short-term effects. Our case for the coal-to-gas shift is stronger than previously found, reinforcing the support for coal phase-out.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Short- and long-term climate impacts of coal and natural gas power plants in two stages.
Fig. 2: Short- and long-term climate impacts of coal and natural gas power plants as a result of different GHGs and SLCP emissions.
Fig. 3: Differences in the climate impacts between coal and natural gas power plants.
Fig. 4: Very short-term climate impacts for different emission and impact locations.

Data availability

The data that support the findings of this study are available from the corresponding author on request.

Code availability

The computer codes used to generate the results presented in this study are available from the corresponding author on request.


  1. 1.

    Edenhofer, O. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 33–107 (Cambridge Univ. Press, 2014).

  2. 2.

    Faramawy, S., Zaki, T. & Sakr, A. A. E. Natural gas origin, composition, and processing: a review. J. Nat. Gas Sci. Eng. 34, 34–54 (2016).

    Article  CAS  Google Scholar 

  3. 3.

    Howarth, R. W., Santoro, R. & Ingraffea, A. Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim. Change 106, 679 (2011).

    Article  CAS  Google Scholar 

  4. 4.

    Cathles, L. M., Brown, L., Taam, M. & Hunter, A. A commentary on “The greenhouse-gas footprint of natural gas in shale formations” by R.W. Howarth, R. Santoro, and Anthony Ingraffea. Clim. Change 113, 525–535 (2012).

    Article  CAS  Google Scholar 

  5. 5.

    O’Sullivan, F. & Paltsev, S. Shale gas production: potential versus actual greenhouse gas emissions. Environ. Res. Lett. 7, 044030 (2012).

    Article  CAS  Google Scholar 

  6. 6.

    Weber, C. L. & Clavin, C. Life cycle carbon footprint of shale gas: review of evidence and implications. Environ. Sci. Technol. 46, 5688–5695 (2012).

    Article  CAS  Google Scholar 

  7. 7.

    Allen, D. T. et al. Measurements of methane emissions at natural gas production sites in the United States. Proc. Natl Acad. Sci. USA 110, 17768–17773 (2013).

    Article  Google Scholar 

  8. 8.

    Brandt, A. R. et al. Methane leaks from North American natural gas systems. Science 343, 733–735 (2014).

    Article  CAS  Google Scholar 

  9. 9.

    Howarth, R. W. A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas. Ener. Sci. Eng. 2, 47–60 (2014).

    Article  CAS  Google Scholar 

  10. 10.

    Cremonese, L. & Gusev, A. The Uncertain Climate Cost of Natural Gas: Assessment of Methane Leakage Discrepancies in Europe, Russia and the US, and Implications for Sustainability (Institute for Advanced Sustainability Studies, 2016).

  11. 11.

    Balcombe, P., Anderson, K., Speirs, J., Brandon, N. & Hawkes, A. The natural gas supply chain: the importance of methane and carbon dioxide emissions. ACS Sustain. Chem. Eng. 5, 3–20 (2017).

    Article  CAS  Google Scholar 

  12. 12.

    World Energy Outlook 2017 (International Energy Agency, 2017).

  13. 13.

    Alvarez, R. A. et al. Assessment of methane emissions from the U.S. oil and gas supply chain. Science 361, 186–188 (2018).

    CAS  Google Scholar 

  14. 14.

    Hultman, N., Rebois, D., Scholten, M. & Ramig, C. The greenhouse impact of unconventional gas for electricity generation. Environ. Res. Lett. 6, 044008 (2011).

    Article  CAS  Google Scholar 

  15. 15.

    Wigley, T. M. L. Coal to gas: the influence of methane leakage. Clim. Change 108, 601 (2011).

    Article  CAS  Google Scholar 

  16. 16.

    Alvarez, R. A., Pacala, S. W., Winebrake, J. J., Chameides, W. L. & Hamburg, S. P. Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl Acad. Sci. USA 109, 6435–6440 (2012).

    Article  Google Scholar 

  17. 17.

    Burnham, A. et al. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum. Environ. Sci. Technol. 46, 619–627 (2012).

    Article  CAS  Google Scholar 

  18. 18.

    Heath, G. A., O’Donoughue, P., Arent, D. J. & Bazilian, M. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation. Proc. Natl Acad. Sci. USA 111, E3167–E3176 (2014).

    Article  CAS  Google Scholar 

  19. 19.

    Zhang, X., Myhrvold, N. P. & Caldeira, K. Key factors for assessing climate benefits of natural gas versus coal electricity generation. Environ. Res. Lett. 9, 114022 (2014).

    Article  CAS  Google Scholar 

  20. 20.

    Lueken, R., Klima, K., Griffin, W. M. & Apt, J. The climate and health effects of a USA switch from coal to gas electricity generation. Energy 109, 1160–1166 (2016).

    Article  Google Scholar 

  21. 21.

    Farquharson, D. et al. Beyond Global Warming Potential: a comparative application of climate impact metrics for the life cycle assessment of coal and natural gas based electricity. J. Ind. Ecol. 21, 857–873 (2017).

    Article  CAS  Google Scholar 

  22. 22.

    Qin, Y., Edwards, R., Tong, F. & Mauzerall, D. L. Can switching from coal to shale gas bring net carbon reductions to China? Environ. Sci. Technol. 51, 2554–2562 (2017).

    Article  CAS  Google Scholar 

  23. 23.

    Cherubini, F. et al. Bridging the gap between impact assessment methods and climate science. Environ. Sci. Policy 64, 129–140 (2016).

    Article  Google Scholar 

  24. 24.

    Levasseur, A. et al. Enhancing life cycle impact assessment from climate science: review of recent findings and recommendations for application to LCA. Ecol. Indic. 71, 163–174 (2016).

    Article  Google Scholar 

  25. 25.

    Levasseur, A. et al. in Global Guidance for Life Cycle Impact Assessment Indicators Vol. 1 (eds Frischknecht, R. & Jolliet, O.) 59–75 (UNEP, 2016).

  26. 26.

    Jolliet, O. et al. Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use.Int. J. Life Cycle Assess. 23, 2189–2207 (2018).

    Article  CAS  Google Scholar 

  27. 27.

    Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

    Article  Google Scholar 

  28. 28.

    Collins, W. J. et al. Global and regional temperature-change potentials for near-term climate forcers. Atmos. Chem. Phys. 13, 2471–2485 (2013).

    Article  CAS  Google Scholar 

  29. 29.

    Geden, O. & Löschel, A. Define limits for temperature overshoot targets. Nat. Geosci. 10, 881–882 (2017).

    Article  CAS  Google Scholar 

  30. 30.

    Tanaka, K. & O’Neill, B. C. Paris Agreement zero emissions goal is not always consistent with 2 °C and 1.5 °C temperature targets. Nat. Clim. Change 8, 319–324 (2018).

    Article  CAS  Google Scholar 

  31. 31.

    Jackson, S. C. Parallel pursuit of near-term and long-term climate mitigation. Science 326, 526–527 (2009).

    Article  CAS  Google Scholar 

  32. 32.

    Daniel, J. et al. Limitations of single-basket trading: lessons from the Montreal Protocol for climate policy. Clim. Change 111, 241–248 (2012).

    Article  Google Scholar 

  33. 33.

    Smith, S. M. et al. Equivalence of greenhouse-gas emissions for peak temperature limits. Nat. Clim. Change 2, 535–538 (2012).

    Article  CAS  Google Scholar 

  34. 34.

    Court, V. & Fizaine, F. Long-term estimates of the energy-return-on-investment (EROI) of coal, oil, and gas global productions. Ecol. Econ. 138, 145–159 (2017).

    Article  Google Scholar 

  35. 35.

    Policy Options for Stabilizing Global Climate. Report to Congress: Main Report (US EPA, 1990).

  36. 36.

    Lelieveld, J. & Crutzen, P. J. Indirect chemical effects of methane on climate warming. Nature 355, 339–342 (1992).

    Article  CAS  Google Scholar 

  37. 37.

    Lelieveld, J., Crutzen, P. J. & Brühl, C. Climate effects of atmospheric methane. Chemosphere 26, 739–768 (1993).

    Article  CAS  Google Scholar 

  38. 38.

    Reshetnikov, A. I., Paramonova, N. N. & Shashkov, A. A. An evaluation of historical methane emissions from the Soviet gas industry. J. Geophys. Res. Atmos. 105, 3517–3529 (2000).

    Article  CAS  Google Scholar 

  39. 39.

    Lelieveld, J. et al. Greenhouse gases: low methane leakage from gas pipelines. Nature 434, 841–842 (2005).

    Article  CAS  Google Scholar 

  40. 40.

    Rodhe, H. A comparison of the contribution of various gases to the greenhouse effect. Science 248, 1217–1219 (1990).

    Article  CAS  Google Scholar 

  41. 41.

    Hayhoe, K., Kheshgi, H. S., Jain, A. K. & Wuebbles, D. J. Substitution of natural gas for coal: climatic effects of utility sector emissions. Clim. Change 54, 107–139 (2002).

    Article  CAS  Google Scholar 

  42. 42.

    Jackson, R. B. et al. The environmental costs and benefits of fracking. Annu. Rev. Environ. Resour. 39, 327–362 (2014).

    Article  Google Scholar 

  43. 43.

    Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H. & Kondash, A. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 48, 8334–8348 (2014).

    Article  CAS  Google Scholar 

  44. 44.

    Weingarten, M., Ge, S., Godt, J. W., Bekins, B. A. & Rubinstein, J. L. High-rate injection is associated with the increase in U.S. mid-continent seismicity. Science 348, 1336–1340 (2015).

    Article  CAS  Google Scholar 

  45. 45.

    Dong, D. et al. Breakthrough and prospect of shale gas exploration and development in China. Nat. Gas Ind. B 3, 12–26 (2016).

    Article  Google Scholar 

  46. 46.

    Wilson, I. A. G. & Staffell, I. Rapid fuel switching from coal to natural gas through effective carbon pricing. Nat. Ener. 3, 365–372 (2018).

    Article  CAS  Google Scholar 

  47. 47.

    Zavala-Araiza, D. et al. Reconciling divergent estimates of oil and gas methane emissions. Proc. Natl Acad. Sci. USA 112, 15597–15602 (2015).

    CAS  Google Scholar 

  48. 48.

    Miller, S. M. et al. Anthropogenic emissions of methane in the United States. Proc. Natl Acad. Sci. USA 110, 20018–20022 (2013).

    Article  CAS  Google Scholar 

  49. 49.

    Caulton, D. R. et al. Toward a better understanding and quantification of methane emissions from shale gas development. Proc. Natl Acad. Sci. USA 111, 6237–6242 (2014).

    Article  CAS  Google Scholar 

  50. 50.

    Zavala-Araiza, D. et al. Super-emitters in natural gas infrastructure are caused by abnormal process conditions. Nat. Commun. 8, 14012 (2017).

    Article  CAS  Google Scholar 

  51. 51.

    Levi, M. Climate consequences of natural gas as a bridge fuel. Clim. Change 118, 609–623 (2013).

    Article  CAS  Google Scholar 

  52. 52.

    McJeon, H. et al. Limited impact on decadal-scale climate change from increased use of natural gas. Nature 514, 482–485 (2014).

    Article  CAS  Google Scholar 

  53. 53.

    Hausfather, Z. Bounding the climate viability of natural gas as a bridge fuel to displace coal. Ener. Policy 86, 286–294 (2015).

    Article  CAS  Google Scholar 

  54. 54.

    Hellweg, S. & Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109–1113 (2014).

    Article  CAS  Google Scholar 

  55. 55.

    Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds T. F. Stocker et al.) 659–740 (Cambridge Univ. Press, 2013).

  56. 56.

    Lashof, D. A. & Ahuja, D. R. Relative contributions of greenhouse gas emissions to global warming. Nature 344, 529–531 (1990).

    Article  CAS  Google Scholar 

  57. 57.

    Tanaka, K., Peters, G. P. & Fuglestvedt, J. S. Policy update: multicomponent climate policy: why do emission metrics matter? Carbon Manag. 1, 191–197 (2010).

    Article  Google Scholar 

  58. 58.

    Kandlikar, M. Indices for comparing greenhouse gas emissions: integrating science and economics. Ener. Econ. 18, 265–281 (1996).

    Article  Google Scholar 

  59. 59.

    Manne, A. S. & Richels, R. G. An alternative approach to establishing trade-offs among greenhouse gases. Nature 410, 675–677 (2001).

    Article  CAS  Google Scholar 

  60. 60.

    Shine, K. P., Fuglestvedt, J. S., Hailemariam, K. & Stuber, N. Alternatives to the Global Warming Potential for comparing climate impacts of emissions of greenhouse gases. Clim. Change 68, 281–302 (2005).

    Article  CAS  Google Scholar 

  61. 61.

    Tanaka, K., O’Neill, B. C., Rokityanskiy, D., Obersteiner, M. & Tol, R. Evaluating Global Warming Potentials with historical temperature. Clim. Change 96, 443–466 (2009).

    Article  CAS  Google Scholar 

  62. 62.

    Peters, G. P., Aamaas, B., Berntsen, T. & Fuglestvedt, J. S. The integrated global temperature change potential (iGTP) and relationships between emission metrics. Environ. Res. Lett. 6, 044021 (2011).

    Article  CAS  Google Scholar 

  63. 63.

    Allen, M. R. et al. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. npj Clim. Atmos. Sci. 1, 16 (2018).

    Article  Google Scholar 

  64. 64.

    Joos, F. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).

    Article  CAS  Google Scholar 

  65. 65.

    Ocko, I. B. et al. Unmask temporal trade-offs in climate policy debates. Science 356, 492–493 (2017).

    Article  CAS  Google Scholar 

  66. 66.

    Abrahams, L. S., Samaras, C., Griffin, W. M. & Matthews, H. S. Life cycle greenhouse gas emissions from U.S. liquefied natural gas exports: implications for end uses. Environ. Sci. Technol. 49, 3237–3245 (2015).

    Article  CAS  Google Scholar 

  67. 67.

    Fesenfeld, L. P., Schmidt, T. S. & Schrode, A. Climate policy for short- and long-lived pollutants. Nat. Clim. Change 8, 933–936 (2018).

    Article  Google Scholar 

  68. 68.

    Wild, O., Prather, M. J. & Akimoto, H. Indirect long-term global radiative cooling from NOx emissions. Geophys. Res. Lett. 28, 1719–1722 (2001).

    Article  CAS  Google Scholar 

  69. 69.

    Gasser, T. et al. Accounting for the climate–carbon feedback in emission metrics. Earth Syst. Dynam. 8, 235–253 (2017).

    Article  Google Scholar 

  70. 70.

    Aamaas, B., Berntsen, T. K., Fuglestvedt, J. S., Shine, K. P. & Collins, W. J. Regional temperature change potentials for short-lived climate forcers based on radiative forcing from multiple models. Atmos. Chem. Phys. 17, 10795–10809 (2017).

    Article  CAS  Google Scholar 

  71. 71.

    Etminan, M., Myhre, G., Highwood, E. J. & Shine, K. P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43, 12614–12623 (2016).

    Article  CAS  Google Scholar 

  72. 72.

    Tanaka, K., Cherubini, F. & Levasseur, A. Unmask temporal trade-offs in climate policy debates: but how? Science 356, 492–493 (2017);

  73. 73.

    Tol, R. S. J., Berntsen, T. K., O’Neill, B. C., Fuglestvedt, J. S. & Shine, K. P. A unifying framework for metrics for aggregating the climate effect of different emissions. Environ. Res. Lett. 7, 044006 (2012).

    Article  Google Scholar 

  74. 74.

    Allen, M. R. et al. New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat. Clim. Change 6, 773–776 (2016).

    Article  CAS  Google Scholar 

  75. 75.

    Balcombe, P., Speirs, J. F., Brandon, N. P. & Hawkes, A. D. Methane emissions: choosing the right climate metric and time horizon. Environ. Sci. Process. Impacts 20, 1323–1339 (2018).

    Article  CAS  Google Scholar 

  76. 76.

    Lund, M. T., Berntsen, T., Fuglestvedt, J. S., Ponater, M. & Shine, K. P. How much information is lost by using global-mean climate metrics? An example using the transport sector. Clim. Change 113, 949–963 (2012).

    Article  Google Scholar 

  77. 77.

    Fiore, A. M. et al. Linking ozone pollution and climate change: the case for controlling methane. Geophys. Res. Lett. 29, 1919 (2002).

    Article  CAS  Google Scholar 

  78. 78.

    Shindell, D. & Faluvegi, G. Climate response to regional radiative forcing during the twentieth century. Nat. Geosci. 2, 294–300 (2009).

    Article  CAS  Google Scholar 

  79. 79.

    Johnson, N. et al. Stranded on a low-carbon planet: implications of climate policy for the phase-out of coal-based power plants. Technol. Forecast. Soc. Change 90, 89–102 (2015).

    Article  Google Scholar 

  80. 80.

    Pfeiffer, A., Millar, R., Hepburn, C. & Beinhocker, E. The ‘2°C capital stock’ for electricity generation: committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy. Appl. Ener. 179, 1395–1408 (2016).

    Article  Google Scholar 

  81. 81.

    Edenhofer, O., Steckel, J. C., Jakob, M. & Bertram, C. Reports of coal’s terminal decline may be exaggerated. Environ. Res. Lett. 13, 024019 (2018).

    Article  CAS  Google Scholar 

  82. 82.

    Spencer, T. et al. The 1.5°C target and coal sector transition: at the limits of societal feasibility. Clim. Policy 18, 335–351 (2018).

    Article  Google Scholar 

  83. 83.

    Schmale, J., Shindell, D., von Schneidemesser, E., Chabay, I. & Lawrence, M. Air pollution: clean up our skies. Nature 515, 335–337 (2014).

    Article  CAS  Google Scholar 

  84. 84.

    Schrag, D. P. Is shale gas good for climate change? Daedalus 141, 72–80 (2012).

    Article  Google Scholar 

  85. 85.

    Newell, R. G. & Raimi, D. Implications of shale gas development for climate change. Environ. Sci. Technol. 48, 8360–8368 (2014).

    Article  CAS  Google Scholar 

  86. 86.

    Zhang, X., Myhrvold, N. P., Hausfather, Z. & Caldeira, K. Climate benefits of natural gas as a bridge fuel and potential delay of near-zero energy systems. Appl. Ener. 167, 317–322 (2016).

    Article  CAS  Google Scholar 

  87. 87.

    Fuglestvedt, J. et al. Implications of possible interpretations of ‘greenhouse gas balance’ in the Paris Agreement. Phil. Trans. R. Soc. A 376, 20160445 (2018).

    Article  CAS  Google Scholar 

  88. 88.

    Dones, R. et al. Life Cycle Inventories of Energy Systems: Results for Current Systems in Switzerland and other UCTE Countries. Final report ecoinvent data v2.0. No. 5 (Swiss Centre for Life Cycle Inventories, 2007).

  89. 89.

    Moreno Ruiz, E. et al. Documentation of Changes Implemented in the ecoinvent Database v3.4 (ecoinvent, 2017).

  90. 90.

    Boucher, O. & Reddy, M. S. Climate trade-off between black carbon and carbon dioxide emissions. Ener. Policy 36, 193–200 (2008).

    Article  Google Scholar 

  91. 91.

    Azar, C. & Johansson, D. J. A. On the relationship between metrics to compare greenhouse gases—the case of IGTP, GWP and SGTP. Earth Syst. Dynam. 3, 139–147 (2012).

    Article  Google Scholar 

  92. 92.

    Bond, T. C. et al. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118, 5380–5552 (2013).

    Article  CAS  Google Scholar 

  93. 93.

    Reddy, M. S. & Venkataraman, C. Inventory of aerosol and sulphur dioxide emissions from India: I—fossil fuel combustion. Atmos. Environ. 36, 677–697 (2002).

    Article  CAS  Google Scholar 

  94. 94.

    Kupiainen, K. & Klimont, Z. Primary emissions of fine carbonaceous particles in Europe. Atmos. Environ. 41, 2156–2170 (2007).

    Article  CAS  Google Scholar 

  95. 95.

    Aasestad, K. Emissions of Black Carbon and Organic Carbon in Norway 1990–2011 (Statistisk sentralbyrå, 2013).

  96. 96.

    Fry, M. M. et al. The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing. J. Geophys. Res. Atmos. 117, D07306 (2012).

    Article  CAS  Google Scholar 

  97. 97.

    Yu, H. et al. A multimodel assessment of the influence of regional anthropogenic emission reductions on aerosol direct radiative forcing and the role of intercontinental transport. J. Geophys. Res. Atmos. 118, 700–720 (2013).

    Article  CAS  Google Scholar 

  98. 98.

    Reisinger, A., Meinshausen, M., Manning, M. & Bodeker, G. Uncertainties of global warming metrics: CO2 and CH4. Geophys. Res. Lett. 37, L14707 (2010).

    Article  CAS  Google Scholar 

  99. 99.

    Boucher, O., Friedlingstein, P., Collins, B. & Shine, K. P. The indirect global warming potential and global temperature change potential due to methane oxidation. Environ. Res. Lett. 4, 044007 (2009).

    Article  CAS  Google Scholar 

  100. 100.

    Gillett, N. P. & Matthews, H. D. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases. Environ. Res. Lett. 5, 034011 (2010).

    Article  Google Scholar 

  101. 101.

    Cherubini, F. & Tanaka, K. Amending the inadequacy of a single indicator for climate impact analyses. Environ. Sci. Technol. 50, 12530–12531 (2016).

    Article  CAS  Google Scholar 

Download references


This research was partially supported by the Environment Research and Technology Development Fund (2–1702) of the Environmental Restoration and Conservation Agency (Japan). K.T. was supported by a Senior Fellowship at the Institute for Advanced Sustainability Studies (Potsdam, Germany) to conduct the early phases of this study. F.C. and W.J.C. acknowledge support from the Research Council of Norway (project numbers 244074 and 235548, respectively). The authors are grateful for comments from O. Boucher and A. McLean, which were useful to improve this study.

Author information




K.T. led the study. K.T. and F.C. designed the experiment. O.C. and F.C. derived the emissions data. W.J.C. computed the emissions metrics. K.T. and O.C. calculated the climate impacts. O.C. performed the Monte Carlo analysis. K.T. generated all of the figures and tables. K.T., O.C., W.J.C. and F.C. analysed the results. K.T. drafted the manuscript, with inputs from O.C., W.J.C. and F.C.

Corresponding author

Correspondence to Katsumasa Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–8, Supplementary Figs. 1–9 and Supplementary references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanaka, K., Cavalett, O., Collins, W.J. et al. Asserting the climate benefits of the coal-to-gas shift across temporal and spatial scales. Nat. Clim. Chang. 9, 389–396 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing