Contributions of GRACE to understanding climate change

Abstract

Time-resolved satellite gravimetry has revolutionized understanding of mass transport in the Earth system. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) has enabled monitoring of the terrestrial water cycle, ice sheet and glacier mass balance, sea level change and ocean bottom pressure variations, as well as understanding responses to changes in the global climate system. Initially a pioneering experiment of geodesy, the time-variable observations have matured into reliable mass transport products, allowing assessment and forecast of a number of important climate trends, and improvements in service applications such as the United States Drought Monitor. With the successful launch of the GRACE Follow-On mission, a multi-decadal record of mass variability in the Earth system is within reach.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Global representation of trends and variability in ice and water mass recovered by GRACE over 15 years.
Fig. 2: GRACE observations of mass change of the Polar ice sheets between April 2002 and June 2017.
Fig. 3: GRACE zonal mean of terrestrial water storage anomalies for April 2002 to June 2017.
Fig. 4: Global mean sea-level observed with satellite altimetry, GRACE and Argo floats between 2005 and 2016.
Fig. 5: Operational drought monitoring supported by GRACE.

Data availability

The GRACE data used in this paper are freely available from the websites of the Science Data Systems Centres. The GRACE gravity field data products (Level 2 data) as well as supporting documentation may be accessed at http://podaac.jpl.nasa.gov/grace and http://isdc.gfz-potsdam.de/grace. User-friendly, gridded maps of mass change (Level 3 data) are available from https://grace.jpl.nasa.gov/ (JPL), http://www2.csr.utexas.edu/grace/ (CSR) and http://gravis.gfz-potsdam.de/home (GFZ). GRACE Follow-On data will be provided through the same portals once available. The reader is encouraged to use all data sets available.

A list of GRACE-related publications is available under https://grace.jpl.nasa.gov/publications/ and https://www.gfz-potsdam.de/en/grace/. Videos of the GRACE-Follow On pre-launch briefing and the launch are available under https://www.youtube.com/watch?v=qYJt-6uHVcM and https://www.youtube.com/watch?v=I_0GgKfwCSk, respectively (both sources last accessed September 15, 2018).

The figures and updates to published values presented in this paper are based on the following data sets and processing.

Figure 1: the plot is based on the 1-arc degree mascon solution by CSR RL05M5. A linear trend, annual and semi-annual model is fit to each pixel for the entire mission duration, assuming temporally uniform uncertainties. The temporal linear part of that fit is mapped in a and b the standard deviation shown in c is calculated after the removal of the temporal linear trend. The trends have been corrected for glacial-isostatic adjustment using the ICE5G model of Peltier et al.13 computed by A et al.125.

Figure 2 and ‘Ice sheets and glaciers’: time series of ice-sheet mass change are based on GRACE Level 2 data of CSR RL05 obtained with an inversion approach based on forward modelling19,126. For Antarctica the GIA correction is AGE1 (ref. 126) (48 ± 28 Gt yr–1), for Greenland it is GGG1D (ref. 127)(17 Gt yr–1). Uncertainties are calculated based on the formal monthly uncertainties provided by the processing centres, scaled by the root mean square (RMS) residual after subtracting temporal fluctuations longer than three months. Temporal linear trends for the entire GRACE period are estimated using uncertainty-weighted least squares. Annual balances are estimated using an unweighted piecewise linear model with breakpoints on 1 January. Uncertainties for the temporal linear trends and the annual balances are obtained by error propagation.

Figure 3 and ‘Terrestrial water storage’: time series of the zonal mean of terrestrial water storage anomalies in mid-latitudes are based on CSR RL05M Mascons5. Uncertainties are calculated as RMS residual of the zonal mean after subtracting the linear trend, offset, annual and sub-annual temporal components and fluctuations longer than five months. The RMS uncertainty (2 cm equivalent water height along the latitude, 2σ) is then used to scale the formal, time-dependent uncertainties provided by the processing centre CSR. Then the temporal model is refit and propagated uncertainties are calculated. The annual amplitude is shown on the right part of the figure. The anomalies shown in the left part of the figure are the residuals with respect to the fitted temporal model.

Figure 4 and ‘Sea-level change and ocean dynamics’: Global Mean Sea-level (GMSL) and its components. GSML from altimetry is based on data provided by the University of Colorado (http://sealevel/colorado.edu)89. Ocean mass changes are derived from GRACE Level 2 data of three processing centres (CSR RL05, JPL RL05 and GFZ RL05) using an averaging kernel method and scaling100, available from the University of South Florida (http://xena.marine.usf.edu/~chambers/SatLab/Home.html). Global mean steric sea level anomalies are based on Argo data provided by the National Oceanic and Atmospheric Administration (NOAA; https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/basin_fsl_data.html). To unify the temporal sampling, we adopt three-month (seasonal) averages, which is limited by the sampling period of the Argo data obtained from NOAA. These were computed after first fitting and removing annual and semi-annual sinusoids from the altimetry and GRACE monthly averages. An annual and semi-annual sinusoid was also estimated and removed from the three-month thermometric time-series for consistency. The correction for glacial-isostatic adjustment to the GRACE data is based on the ICE5G ice model13, computed by A et al.125. Further details can be found in Chambers et al.94.

References

  1. 1.

    Tapley, B. D., Bettadpur, S., Watkins, M. & Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 31, L09607 (2004).

    Article  Google Scholar 

  2. 2.

    National Research Council. Satellite gravity and the geosphere: contributions to the study of the solid Earth and its fluid envelopes (National Acad. Press, 1997).

  3. 3.

    Marti, U. (ed) Gravity, geoid and height systems: Proceedings of the IAG Symposium GGHS2012, October 9–12, 2012, Venice, Italy (Springer, 2015).

  4. 4.

    Tapley, B. D. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).

    Article  CAS  Google Scholar 

  5. 5.

    Save, H., Bettadpur, S. & Tapley, B. D. High‐resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 121, 7547–7569 (2016).

    Article  Google Scholar 

  6. 6.

    Luthcke, S. B. et al. Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314, 1286–1289 (2006).

    Article  CAS  Google Scholar 

  7. 7.

    Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

    Article  Google Scholar 

  8. 8.

    van den Broeke, M. et al. Partitioning recent Greenland mass loss. Science 326, 984–986 (2009).

    Article  CAS  Google Scholar 

  9. 9.

    Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

    Article  CAS  Google Scholar 

  10. 10.

    Shepherd, A. et al. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 556, 219–222 (2018).

    Article  CAS  Google Scholar 

  11. 11.

    Vaughan, D. G. et al. in Climate Change 2013: The Physical Science Basis (eds. Stocker, T. F. et al.) 317–382 (IPCC, Cambridge Univ. Press, 2013).

  12. 12.

    Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. T. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503 (2011).

    Article  Google Scholar 

  13. 13.

    Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev. Earth Planet Sci. 32, 111–149 (2004).

    Article  CAS  Google Scholar 

  14. 14.

    Caron, L. et al. GIA model statistics for GRACE hydrology, cryosphere, and ocean science. Geophys. Res. Lett. 45, 2203–2212 (2018).

    Article  Google Scholar 

  15. 15.

    Velicogna, I. & Wahr, J. Greenland mass balance from GRACE. Geophys. Res. Lett. 32, L18505 (2005).

    Google Scholar 

  16. 16.

    Velicogna, I. & Wahr, J. Measurements of time-variable gravity show mass loss in Antarctica. Science 311, 1754–1756 (2006).

    Article  CAS  Google Scholar 

  17. 17.

    Wouters, B., Chambers, D. & Schrama, E. J. O. GRACE observes small‐scale mass loss in Greenland. Geophys. Res. Lett. 35, L20501 (2008).

    Article  Google Scholar 

  18. 18.

    Chen, J. L., Wilson, C. R., Blankenship, D. D. & Tapley, B. D. Antarctic mass rates from GRACE. Geophys. Res. Lett. 33, L11502 (2006).

    Article  Google Scholar 

  19. 19.

    Sasgen, I. et al. Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett. 333, 293–303 (2012).

    Article  CAS  Google Scholar 

  20. 20.

    Velicogna, I., Sutterley, T. C. & Van Den Broeke, M. R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time‐variable gravity data. Geophys. Res. Lett. 41, 8130–8137 (2014).

    Article  Google Scholar 

  21. 21.

    Wouters, B. et al. Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat. Geosci. 6, 613–616 (2013).

    Article  CAS  Google Scholar 

  22. 22.

    WCRP Global Sea Level Budget Group. Global sea-level budget 1993–present, Earth Syst. Sci. Data 10, 1551–1590 (2018).

  23. 23.

    Hanna, E. et al. Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int. J. Climatol. 34, 1022–1037 (2014).

    Article  Google Scholar 

  24. 24.

    Sasgen, I., Dobslaw, H., Martinec, Z. & Thomas, M. Satellite gravimetry observation of Antarctic snow accumulation related to ENSO. Earth Planet. Sci. Lett. 299, 352–358 (2010).

    Article  CAS  Google Scholar 

  25. 25.

    Boening, C., Lebsock, M., Landerer, F. & Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett. 39, L21501 (2012).

    Google Scholar 

  26. 26.

    Mémin, A., Flament, T., Alizier, B., Watson, C. & Rémy, F. Interannual variation of the Antarctic Ice Sheet from a combined analysis of satellite gravimetry and altimetry data. Earth Planet. Sci. Lett. 422, 150–156 (2015).

    Article  CAS  Google Scholar 

  27. 27.

    Behrangi, A., Gardner, A. S., Reager, J. T. & Fisher, J. B. Using GRACE to constrain precipitation amount over cold mountainous basins. Geophys. Res. Lett. 44, 219–227 (2017).

    Article  Google Scholar 

  28. 28.

    Arendt, A. et al. Analysis of a GRACE global mascon solution for Gulf of Alaska glaciers. J. Glaciol. 59, 913–924 (2013).

    Article  Google Scholar 

  29. 29.

    Gardner, A. S. et al. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 473, 357–360 (2011).

    Article  CAS  Google Scholar 

  30. 30.

    Lenaerts, J. T. et al. Irreversible mass loss of Canadian Arctic Archipelago glaciers. Geophys. Res. Lett. 40, 870–874 (2013).

    Article  Google Scholar 

  31. 31.

    Tamisiea, M. E., Leuliette, E. W., Davis, J. L. & Mitrovica, J. X. Constraining hydrological and cryospheric mass flux in southeastern Alaska using space‐based gravity measurements. Geophys. Res. Lett. 32, L20501 (2005).

    Article  Google Scholar 

  32. 32.

    Luthcke, S. B., Arendt, A. A., Rowlands, D. D., McCarthy, J. J. & Larsen, C. F. Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J. Glaciol. 54, 767–777 (2008).

    Article  Google Scholar 

  33. 33.

    Chen, J. L., Wilson, C. R., Tapley, B. D., Blankenship, D. D. & Ivins, E. R. Patagonia icefield melting observed by Gravity Recovery and Climate Experiment (GRACE). Geophys. Res. Lett. 34, L22501 (2007).

    Article  Google Scholar 

  34. 34.

    Ivins, E. R. et al. On‐land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009. J. Geophys. Res. Solid Earth 116, B02403 (2011).

    Article  Google Scholar 

  35. 35.

    Jacob, T., Wahr, J., Pfeffer, W. T. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012).

    Article  CAS  Google Scholar 

  36. 36.

    Reager, J. T. et al. A decade of sea level rise slowed by climate-driven hydrology. Science 351, 699–703 (2016).

    Article  CAS  Google Scholar 

  37. 37.

    Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    Article  CAS  Google Scholar 

  38. 38.

    Held, I. M. & Soden, B. J. Robust Responses of the Hydrological Cycle to Global Warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  39. 39.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  40. 40.

    Richey, A. S. et al. Uncertainty in global groundwater storage estimates in a total groundwater stress framework. Water Resour. Res. 51, 5198–5216 (2015).

    Article  Google Scholar 

  41. 41.

    Jensen, L., Rietbroek, R. & Kusche, J. Land water contribution to sea level from GRACE and Jason-1 measurements. J. Geophys. Res. Oceans 118, 212–226 (2013).

    Article  Google Scholar 

  42. 42.

    Humphrey, V., Gudmundsson, L. & Seneviratne, S. I. Assessing global water storage variability from GRACE: Trends, seasonal cycle, subseasonal anomalies and extremes. Surv. Geophys. 37, 357–395 (2016).

    Article  Google Scholar 

  43. 43.

    Rietbroek, R., Brunnabend, S.-E., Kusche, J., Schröter, J. & Dahle, C. Revisiting the contemporary sea-level budget on global and regional scales. Proc. Natl Acad. Sci. USA 113, 1504–1509 (2016).

    Article  CAS  Google Scholar 

  44. 44.

    Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, 1080–1089 (2018).

    Article  CAS  Google Scholar 

  45. 45.

    Reager, J. T. & Famiglietti, J. S. Global terrestrial water storage capacity and flood potential using GRACE. Geophys. Res. Lett. 36, L23402 (2009).

    Article  Google Scholar 

  46. 46.

    Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S. & Fasullo, J. The 2011 La Niña: So strong, the oceans fell. Geophys. Res. Lett. 39, L109602 (2012).

    Google Scholar 

  47. 47.

    Chen, J. L., Wilson, C. R., Tapley, B. D., Yang, Z. L. & Niu, G. Y. 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J. Geophys. Res. Solid Earth 114, B05404 (2009).

    Google Scholar 

  48. 48.

    Long, D. et al. GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys. Res. Lett. 40, 3395–3401 (2013).

    Article  Google Scholar 

  49. 49.

    Thomas, A. C., Reager, J. T., Famiglietti, J. S. & Rodell, M. A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett. 41, 1537–1545 (2014).

    Article  Google Scholar 

  50. 50.

    Rodell, M. et al. The observed state of the water cycle in the early twenty-first century. J. Clim. 28, 8289–8318 (2015).

    Article  Google Scholar 

  51. 51.

    Rodell, M., Famiglietti, J.S., Chambers, D.P. & Wahr, J. in State of the Climate in 2010 (eds Blunden, J., Arndt, D. S. & Baringer, M.O.) S50–S51 (Bull. Amer. Meteor. Soc., 2011).

  52. 52.

    Eicker, A., Forootan, E., Springer, A., Longuevergne, L. & Kusche, J. Does GRACE see the terrestrial water cycle “intensifying”? J. Geophys. Res. Atmospheres 121, 733–745 (2016).

    Article  Google Scholar 

  53. 53.

    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    Article  CAS  Google Scholar 

  54. 54.

    Rodell, M., McWilliams, E. B., Famiglietti, J. S., Beaudoing, H. K. & Nigro, J. Estimating evapotranspiration using an observation based terrestrial water budget. Hydrol. Process. 25, 4082–4092 (2011).

    Article  Google Scholar 

  55. 55.

    Sheffield, J., Ferguson, C. R., Troy, T. J., Wood, E. F. & McCabe, M. F. Closing the terrestrial water budget from satellite remote sensing. Geophys. Res. Lett. 36, L07403 (2009).

    Article  Google Scholar 

  56. 56.

    Yeh, P. J.-F., Swenson, S. C., Famiglietti, J. S. & Rodell, M. Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 42, W12203 (2006).

    Article  Google Scholar 

  57. 57.

    Rodell, M. et al. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J. 15, 159–166 (2007).

    Article  CAS  Google Scholar 

  58. 58.

    Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

    Article  CAS  Google Scholar 

  59. 59.

    Longuevergne, L., Scanlon, B. R. & Wilson, C. R. GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA. Water Resour. Res. 46, W11517 (2010).

    Article  Google Scholar 

  60. 60.

    Famiglietti, J. S. et al. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 38, L03403 (2011).

    Article  Google Scholar 

  61. 61.

    Voss, K. A. et al. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris‐Euphrates‐Western Iran region. Water Resour. Res. 49, 904–914 (2013).

    Article  Google Scholar 

  62. 62.

    Castle, S. L. et al. Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys. Res. Lett. 41, 5904–5911 (2014).

    Article  Google Scholar 

  63. 63.

    Sultan, M., Ahmed, M., Wahr, J., Yan, E. & Emil, M. K. Monitoring aquifer depletion from space: case studies from the saharan and arabian aquifers. Remote Sens. Terr. Water Cycle 206, 349 (2014).

    Google Scholar 

  64. 64.

    Doell, P., Mueller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. Global‐scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).

    Article  Google Scholar 

  65. 65.

    Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    Article  Google Scholar 

  66. 66.

    Ramillien, G. et al. Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour. Res. 42, W10403 (2006).

    Article  Google Scholar 

  67. 67.

    Syed, T. H. et al. Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land‐atmosphere water balance. Geophys. Res. Lett. 32, L24404 (2005).

    Article  Google Scholar 

  68. 68.

    Swenson, S. & Wahr, J. Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravity measurements. J. Hydrometeorol. 7, 252–270 (2006).

    Article  Google Scholar 

  69. 69.

    Syed, T. H., Famiglietti, J. S. & Chambers, D. P. GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J. Hydrometeorol. 10, 22–40 (2009).

    Article  Google Scholar 

  70. 70.

    Niu, G.-Y. & Yang, Z.-L. Assessing a land surface model’s improvements with GRACE estimates. Geophys. Res. Lett. 33, L07401 (2006).

    Article  Google Scholar 

  71. 71.

    Lo, M.-H., Famiglietti, J. S., Yeh, P.-F. & Syed, T. H. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data. Water Resour. Res. 46, W05517 (2010).

    Article  Google Scholar 

  72. 72.

    Swenson, S. C. & Lawrence, D. M. A GRACE‐based assessment of interannual groundwater dynamics in the Community Land Model. Water Resour. Res. 51, 8817–8833 (2015).

    Article  Google Scholar 

  73. 73.

    Güntner, A. et al. A global analysis of temporal and spatial variations in continental water storage. Water Resour. Res. 43, W05416 (2007).

    Article  Google Scholar 

  74. 74.

    Sun, A. Y., Green, R., Swenson, S. & Rodell, M. Toward calibration of regional groundwater models using GRACE data. J. Hydrol. 422, 1–9 (2012).

    Article  Google Scholar 

  75. 75.

    Zaitchik, B. F., Rodell, M. & Reichle, R. H. Assimilation of GRACE terrestrial water storage data into a land surface model: Results for the Mississippi River basin. J. Hydrometeorol. 9, 535–548 (2008).

    Article  Google Scholar 

  76. 76.

    Forman, B. A., Reichle, R. H. & Rodell, M. Assimilation of terrestrial water storage from GRACE in a snow‐dominated basin. Water Resour. Res. 48, W01507 (2012).

    Article  Google Scholar 

  77. 77.

    van Dijk, A. I., Renzullo, L. J., Wada, Y. & Tregoning, P. A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrol. Earth Syst. Sci. 18, 2955–2973 (2014).

    Article  Google Scholar 

  78. 78.

    Eicker, A., Schumacher, M., Kusche, J., Döll, P. & Schmied, H. M. Calibration/data assimilation approach for integrating GRACE data into the WaterGAP Global Hydrology Model (WGHM) using an ensemble Kalman filter: First results. Surv. Geophys. 35, 1285–1309 (2014).

    Article  Google Scholar 

  79. 79.

    Girotto, M., De Lannoy, G. J., Reichle, R. H. & Rodell, M. Assimilation of gridded terrestrial water storage observations from GRACE into a land surface model. Water Resour. Res. 52, 4164–4183 (2016).

    Article  Google Scholar 

  80. 80.

    Trautmann, T. et al. Understanding terrestrial water storage variations in northern latitudes across scales. Hydrol. Earth Syst. Sci. 22, 4061–4082 (2018).

    Article  Google Scholar 

  81. 81.

    Reager, J. T., Thomas, B. F. & Famiglietti, J. S. River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat. Geosci. 7, 588–592 (2014).

    Article  CAS  Google Scholar 

  82. 82.

    Houborg, R., Rodell, M., Li, B., Reichle, R. & Zaitchik, B. F. Drought indicators based on model‐assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour. Res. 48, W07525 (2012).

    Article  Google Scholar 

  83. 83.

    Phillips, T., Nerem, R. S., Fox-Kemper, B., Famiglietti, J. S. & Rajagopalan, B. The influence of ENSO on global terrestrial water storage using GRACE. Geophys. Res. Lett. 39, L16705 (2012).

    Google Scholar 

  84. 84.

    Ni, S. et al. Global Terrestrial Water Storage Changes and Connections to ENSO Events. Surv. Geophys. 39, 1–22 (2018).

    Article  Google Scholar 

  85. 85.

    Kusche, J., Eicker, A., Forootan, E., Springer, A. & Longuevergne, L. Mapping probabilities of extreme continental water storage changes from space gravimetry. Geophys. Res. Lett. 43, 8026–8034 (2016).

    Article  Google Scholar 

  86. 86.

    Zhang, L., Dobslaw, H., Dahle, C., Sasgen, I. & Thomas, M. Validation of MPI-ESM decadal hindcast experiments with terrestrial water storage variations as observed by the GRACE satellite mission. Meteor. Z. 25, 685–694 (2015).

    Article  Google Scholar 

  87. 87.

    Jevrejeva, S., Jackson, L. P., Riva, R. E., Grinsted, A. & Moore, J. C. Coastal sea level rise with warming above 2°C. Proc. Natl Acad. Sci. USA 113, 13342–13347 (2016).

    Article  CAS  Google Scholar 

  88. 88.

    Alley, R. B., Clark, P. U., Huybrechts, P. & Joughin, I. Ice-sheet and sea-level changes. Science 310, 456–460 (2005).

    Article  CAS  Google Scholar 

  89. 89.

    Nerem, R. S. et al. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc. Natl Acad. Sci. USA 115, 201717312 (2018).

    Article  CAS  Google Scholar 

  90. 90.

    Riser, S. C. et al. Fifteen years of ocean observations with the global Argo array. Nat. Clim. Change 6, 145–153 (2016).

    Article  Google Scholar 

  91. 91.

    von Schuckmann, K. et al. An imperative to monitor Earth’s energy imbalance. Nat. Clim. Change 6, 138–144 (2016).

    Article  Google Scholar 

  92. 92.

    Willis, J. K., Roemmich, D. & Cornuelle, B. Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res. Oceans 109, C12036 (2004).

    Article  Google Scholar 

  93. 93.

    Chambers, D. P., Wahr, J. & Nerem, R. S. Preliminary observations of global ocean mass variations with GRACE. Geophys. Res. Lett. 31, (2004).

  94. 94.

    Chambers, D. P. et al. in Integrative Study of the Mean Sea Level and Its Components (eds Cazenave, A. et al.) 315–333 (Springer, 2017).

  95. 95.

    Ngo-Duc, T., Laval, K., Polcher, J. & Cazenave, A. Contribution of continental water to sea level variations during the 1997–1998 El Niño–Southern Oscillation event: comparison between Atmospheric Model Intercomparison Project simulations and TOPEX/Poseidon satellite data. J. Geophys. Res. Atmospheres 110, D09103 (2005).

    Google Scholar 

  96. 96.

    Fasullo, J. T., Boening, C., Landerer, F. W. & Nerem, R. S. Australia’s unique influence on global sea level in 2010–2011. Geophys. Res. Lett. 40, 4368–4373 (2013).

    Article  Google Scholar 

  97. 97.

    Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5, 240–245 (2015).

    Article  Google Scholar 

  98. 98.

    Llovel, W., Willis, J. K., Landerer, F. W. & Fukumori, I. Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nat. Clim. Change 4, 1031 (2014).

    Article  Google Scholar 

  99. 99.

    Volkov, D. L., Lee, S.-K., Landerer, F. W. & Lumpkin, R. Decade‐long deep‐ocean warming detected in the subtropical South Pacific. Geophys. Res. Lett. 44, 927–936 (2017).

    Article  Google Scholar 

  100. 100.

    Johnson, G. C. & Chambers, D. P. Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications. J. Geophys. Res. Oceans 118, 4228–4240 (2013).

    Article  Google Scholar 

  101. 101.

    Zlotnicki, V., Wahr, J., Fukumori, I. & Song, Y. T. Antarctic Circumpolar Current transport variability during 2003–05 from GRACE. J. Phys. Oceanogr. 37, 230–244 (2007).

    Article  Google Scholar 

  102. 102.

    Bergmann, I. & Dobslaw, H. Short-term transport variability of the Antarctic Circumpolar Current from satellite gravity observations. J. Geophys. Res. Oceans 117, C05044 (2012).

    Google Scholar 

  103. 103.

    Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M. & Rignot, E. Origin of Circumpolar deep water intruding onto the Amundsen and Bellingshausen Sea continental shelves. Nat. Commun. 9, 3403 (2018).

    Article  CAS  Google Scholar 

  104. 104.

    Peralta-Ferriz, C., Morison, J. H., Wallace, J. M., Bonin, J. A. & Zhang, J. Arctic Ocean circulation patterns revealed by GRACE. J. Clim. 27, 1445–1468 (2014).

    Article  Google Scholar 

  105. 105.

    Volkov, D. L. & Landerer, F. W. Nonseasonal fluctuations of the Arctic Ocean mass observed by the GRACE satellites. J. Geophys. Res. Oceans 118, 6451–6460 (2013).

    Article  Google Scholar 

  106. 106.

    Bingham, R. J. & Hughes, C. W. Observing seasonal bottom pressure variability in the North Pacific with GRACE. Geophys. Res. Lett. 33, L08607 (2006).

    Article  Google Scholar 

  107. 107.

    Song, Y. T. & Zlotnicki, V. Subpolar ocean bottom pressure oscillation and its links to the tropical ENSO. Int. J. Remote Sens. 29, 6091–6107 (2008).

    Article  Google Scholar 

  108. 108.

    Petrick, C. et al. Low‐frequency ocean bottom pressure variations in the North Pacific in response to time‐variable surface winds. J. Geophys. Res. Oceans 119, 5190–5202 (2014).

    Article  Google Scholar 

  109. 109.

    Dobslaw, H. et al. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophys. J. Int. 211, 263–269 (2017).

    Article  Google Scholar 

  110. 110.

    Yao, Y., Chao, B. F., García‐García, D. & Luo, Z. Variations of the Argentine Gyre observed in the GRACE time‐variable gravity and ocean altimetry measurements. J. Geophys. Res. Oceans 123, 5375–5387 (2018).

    Article  Google Scholar 

  111. 111.

    Landerer, F. W., Wiese, D. N., Bentel, K., Boening, C. & Watkins, M. M. North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalies. Geophys. Res. Lett. 42, 8114–8121 (2015).

    Article  Google Scholar 

  112. 112.

    Svoboda, M. et al. The drought monitor. Bull. Am. Meteorol. Soc. 83, 1181–1190 (2002).

    Article  Google Scholar 

  113. 113.

    Reager, J. T. et al. Assimilation of GRACE terrestrial water storage observations into a land surface model for the assessment of regional flood potential. Remote Sens. 7, 14663–14679 (2015).

    Article  Google Scholar 

  114. 114.

    Gruber, C. & Gouweleeuw, B. Short-latency monitoring of continental, ocean- and atmospheric mass variations using GRACE intersatellite acceleration. Geophys. J. Int. 217, 714–728 (2019).

    Article  Google Scholar 

  115. 115.

    Gouweleeuw, B. T. et al. Daily GRACE gravity field solutions track major flood events in the Ganges–Brahmaputra Delta. Hydrol. Earth Syst. Sci. 22, 2867 (2018).

    Article  Google Scholar 

  116. 116.

    Jensen, D. et al. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems. Environ. Res. Lett. 13, 014021 (2018).

    Article  Google Scholar 

  117. 117.

    National Academies of Sciences, Engineering, and Medicine. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space (National Acad. Press, 2018).

  118. 118.

    National Research Council. Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Acad. Press, 2007).

  119. 119.

    Sheard, B. S. et al. Intersatellite laser ranging instrument for the GRACE follow-on mission. J. Geod. 86, 1083–1095 (2012).

    Article  Google Scholar 

  120. 120.

    Flechtner, F. et al. in Remote Sensing and Water Resources (eds Cazenave, A. et al.) 263–280 (Springer, 2016).

  121. 121.

    Pail, R. et al. Science and user needs for observing global mass transport to understand global change and to benefit society. Surv. Geophys. 36, 743–772 (2015).

    Article  Google Scholar 

  122. 122.

    Wiese, D. N., Nerem, R. S. & Lemoine, F. G. Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites. J. Geod. 86, 81–98 (2012).

    Article  Google Scholar 

  123. 123.

    Elsaka, B. et al. Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation. J. Geod. 88, 31–43 (2014).

    Article  Google Scholar 

  124. 124.

    Bojinski, S. et al. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 95, 1431–1443 (2014).

    Article  Google Scholar 

  125. 125.

    A, G., Wahr, J. & Zhong, S. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int. 192, 557–572 (2013).

    Article  Google Scholar 

  126. 126.

    Sasgen, I. et al. Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. Cryosphere 7, 1499–1512 (2013).

    Article  Google Scholar 

  127. 127.

    Khan, S. A. et al. Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet. Sci. Adv. 2, e1600931 (2016).

    Article  Google Scholar 

  128. 128.

    Vishwakarma, B., Devaraju, B. & Sneeuw, N. What is the spatial resolution of GRACE satellite products for hydrology? Remote Sens. 10, 852 (2018).

    Article  Google Scholar 

  129. 129.

    GRACE-FO Launch Press Kit (NASA, 2018).

Download references

Acknowledgements

The authors acknowledge the influence of J. M. Wahr (formerly of the University of Colorado Boulder, USA) making fundamental contributions, both in theoretical concept and in measurement applications, to the success of the GRACE mission.

C.D., H.D. und F.F. acknowledge funding of the development of the GRACE-Follow On Science Data System by the German Federal Ministry of Education and Research (BMBF) under grant 03F0654A. I.S. acknowledges funding by the Helmholtz Climate Initiative REKLIM (Regional Climate Change), a joint research project of the Helmholtz Association of German Research Centres (HGF) and the German Research Foundation (DFG) through grant SA 1734/4-1. A.G. received funding from the NASA Cryosphere Science program. M.E.T. was supported by CSR discretionary funds.

Author information

Affiliations

Authors

Contributions

All authors contributed the writing and editing of the paper; introductory text (B.D.T., C. R., S.B., M.W. and I.S.), ‘Ice sheets and glaciers’ (I.S., A.G. and I.V.), ‘Terrestrial Water Storage’ (J.F., M.R., J.T.R, and S.S.), ‘Sea-level change and ocean dynamics’ (D.C., F.L., C.B., H.D. and I.S.), ‘Climate service applications’ (F.F., C.D., D.W. and M. R.) and ‘Future of mass transport observations’ (B.D.T., F.L., M.W., F.F. and I.S.); overall editing and internal review E.R.I. and M.E.T; Box 1 (NASA/JPL, I. S.); Fig. 1 (H.S.), Fig. 2 (I.S.), Fig. 3 (I.S. and M.R.), Fig. 4 (D.C. and I.S.) and Fig. 5 (M.R.). I.S. handled implementing the comments of peer reviewers.

Corresponding author

Correspondence to Ingo Sasgen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Climate Change thanks Bryant Loomis and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tapley, B.D., Watkins, M.M., Flechtner, F. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Chang. 9, 358–369 (2019). https://doi.org/10.1038/s41558-019-0456-2

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing