Abstract

Warming temperatures are advancing the timing of seasonal vegetation development in the extratropics, altering plant–animal interactions and increasing the risk of trophic asynchrony. Forest understories are critical yet under-observed ecosystems in which phenological patterns are both altered and obscured by overstory trees. We address the challenge of observing phenological dynamics in the understory by exploiting the physiological relationship between plant phenology and temperature accumulation, a horticultural principle we show to be preserved across spatial scales through a combination of field and growth-chamber observations. These observations provide the foundation for a spaceborne thermal-observation framework, which can trace the discrete phenophases of forest understory plants in near-real time. The thermal basis of this framework also enables the prediction of understory phenology for future climates, which we demonstrate here using Shepherdia canadensis, a widespread fruiting shrub of western North America that has important trophic connections to frugivores. Our approach enables researchers to assess the regional-scale impacts of climate change on bottom-up forest ecosystems and to monitor emerging trophic mismatches.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Daily MODIS LST imagery products are available from the NASA Land Processes Distributed Active Archive Center (LP DAAC, http://lpdaac.usgs.gov). The data that support the findings of this study are available from the corresponding author on reasonable request.

Code availability

The computer code and algorithms generated during this study are available from the corresponding author on reasonable request.

Additional information

Journal peer review information: Nature Climate Change thanks Eric Post and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Reeves, P. H. & Coupland, G. Response of plant development to environment: control of flowering by day length and temperature. Curr. Opin. Plant Biol. 3, 37–42 (2000).

  2. 2.

    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

  3. 3.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

  4. 4.

    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).

  5. 5.

    Kerby, J. T., Wilmers, C. C. & Post, E. in Trait-Mediated Indirect Interactions: Ecological and Evolutionary Perspectives (eds Ohgushi, T. et al.) 508–525 (Cambridge Univ. Press, 2012).

  6. 6.

    Post, E. S. & Inouye, D. W. Phenology: response, driver, and integrator. Ecology 89, 319–320 (2008).

  7. 7.

    Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–294 (2016).

  8. 8.

    Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).

  9. 9.

    Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).

  10. 10.

    Zhang, X. Y. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).

  11. 11.

    Nijland, W., Bolton, D. K., Coops, N. C. & Stenhouse, G. Imaging phenology: scaling from camera plots to landscapes. Remote Sens. Environ. 177, 13–20 (2016).

  12. 12.

    Lindenmayer, D., Franklin, J. & Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 131, 433–445 (2006).

  13. 13.

    De Frenne, P. & Verheyen, K. Weather stations lack forest data. Science 351, 234–234 (2016).

  14. 14.

    Hoover, M. W. Some effects of temperature on the growth of southern peas. Proc. Am. Soc. Hortic. Sci. USA 66, 308–312 (1955).

  15. 15.

    Reáumur, R. A. F. Observations du thermomètre, faites à Paris pendant I’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’Isle de France, à Alger et en quelques-unes de nos isles de l’Amérique. Mem. Acad. Sci. Paris 545–576 (1735).

  16. 16.

    Cesaraccio, C., Spano, D., Duce, P. & Snyder, R. L. An improved model for determining degree-day values from daily temperature data. Int. J. Biometeorol. 45, 161–169 (2001).

  17. 17.

    Miller, P., Lanier, W. & Brandt, S. Using Growing Degree Days to Predict Plant Stages (Montana State Univ., 2001).

  18. 18.

    Snyder, R. L., Spano, D., Cesaraccio, C. & Duce, P. Determining degree-day thresholds from field observations. Int. J. Biometeorol. 42, 177–182 (1999).

  19. 19.

    Hamer, D. & Herrero, S. Grizzly bear food and habitat in the front ranges of Banff National Park, Alberta. Bears Biol. Manag. 7, 199–213 (1987).

  20. 20.

    Laskin, D. N. & McDermid, G. J. Evaluating the level of agreement between human and time-lapse camera observations of understory plant phenology at multiple scales. Ecol. Inform. 33, 1–9 (2016).

  21. 21.

    Misra, G., Buras, A. & Menzel, A. Effects of different methods on the comparison between land surface and ground phenology—a methodological case study from south-western Germany. Remote Sens. 8, 753 (2016).

  22. 22.

    Yang, S. S., Logan, J. & Coffey, D. L. Mathematical formulas for calculating the base temperature for growing degree-days. Agric. For. Meteorol. 74, 61–74 (1995).

  23. 23.

    Neteler, M., Roiz, D., Rocchini, D., Castellani, C. & Rizzoli, A. Terra and Aqua satellites track tiger mosquito invasion: modelling the potential distribution of Aedes albopictus in north-eastern Italy. Int. J. Health Geogr. 10, 49 (2011).

  24. 24.

    Sun, Y. J. et al. Air temperature retrieval from remote sensing data based on thermodynamics. Theor. Appl. Climatol. 80, 37–48 (2005).

  25. 25.

    Niclos, R., Valiente, J. A., Barbera, M. J. & Caselles, V. Land surface air temperature retrieval from EOS-MODIS images. IEEE Geosci. Remote Sens. Lett. 11, 1380–1384 (2014).

  26. 26.

    De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).

  27. 27.

    Laskin, D. N., Montaghi, A., Nielsen, S. E. & McDermid, G. J. Estimating understory temperatures using MODIS LST in mixed cordilleran forests. Remote Sens. 8, 658 (2016).

  28. 28.

    Jang, K., Kang, S., Kimball, J. S. & Hong, S. Y. Retrievals of all-weather daily air temperature using MODIS and AMSR-E data. Remote Sens. 6, 8387–8404 (2014).

  29. 29.

    Coops, N. C., Duro, D. C., Wulder, M. A. & Han, T. Estimating afternoon MODIS land surface temperatures (LST) based on morning MODIS overpass, location and elevation information. Int. J. Remote Sens. 28, 2391–2396 (2007).

  30. 30.

    Crimmins, M. A. & Crimmins, T. M. Monitoring plant phenology using digital repeat photography. Environ. Manage. 41, 949–958 (2008).

  31. 31.

    Huang, R. et al. Mapping of daily mean air temperature in agricultural regions using daytime and nighttime land surface temperatures derived from TERRA and AQUA MODIS data. Remote Sens. 7, 8728–8756 (2015).

  32. 32.

    Laskin, D. N. Montaghi, A. & McDermid, G. J. An open-source method of constructing cloud-free composites of forest understory temperature using MODIS. Remote Sens. Lett. 8, 165–174 (2017).

  33. 33.

    Metz, M., Rocchini, D. & Neteler, M. Surface temperatures at the continental scale: tracking changes with remote sensing at unprecedented detail. Remote Sens. 6, 3822–3840 (2014).

  34. 34.

    Thomson, A. M. et al. RCP4.5: a pathway for stabilization of radiative forcing by 2100. Climatic Change 109, 77 (2011).

  35. 35.

    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

  36. 36.

    Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872 (2007).

  37. 37.

    Crimmins, T. M., Crimmins, M. A., Gerst, K. L., Rosemartin, A. H. & Weltzin, J. F. USA National Phenology Network’s volunteer-contributed observations yield predictive models of phenological transitions. PLoS ONE 12, e0182919 (2017).

  38. 38.

    Melaas, E. K., Friedl, M. A. & Richardson, A. D. Multiscale modeling of spring phenology across deciduous forests in the eastern United States. Glob. Change Biol. 22, 792–805 (2016).

  39. 39.

    Izquierdo-Verdiguier, E., Zurita-Milla, R., Ault, T. R. & Schwartz, M. D. Development and analysis of spring plant phenology products: 36 years of 1-km grids over the conterminous US. Agric. For. Meteorol. 262, 34–41 (2018).

  40. 40.

    Primack, R. B. & Miller-Rushing, A. J. Broadening the study of phenology and climate change. New Phytol. 191, 307–309 (2011).

  41. 41.

    Yu, R., Schwartz, M. D., Donnelly, A. & Liang, L. An observation-based progression modeling approach to spring and autumn deciduous tree phenology. Int. J. Biometeorol. 60, 335–349 (2016).

  42. 42.

    Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).

  43. 43.

    Liang, L., Schwartz, M. D. & Fei, S. Photographic assessment of temperate forest understory phenology in relation to springtime meteorological drivers. Int. J. Biometeorol. 56, 343–355 (2012).

  44. 44.

    Zhang, F., Zhang, L. W., Shi, J. J. & Huang, J. F. Soil moisture monitoring based on land surface temperature-vegetation index space derived from MODIS data. Pedosphere 24, 450–460 (2014).

  45. 45.

    Mendelsohn, R. et al. The ecosystem impacts of severe warming. Am. Econ. Rev. 106, 612–614 (2016).

  46. 46.

    Stenset, N. E. et al. Seasonal and annual variation in the diet of brown bears Ursus arctos in the boreal forest of southcentral Sweden. Wildlife Biol. 22, 107–116 (2016).

  47. 47.

    Deacy, W. W. et al. Phenological synchronization disrupts trophic interactions between Kodiak brown bears and salmon. Proc. Natl Acad. Sci. USA 114, 10432–10437 (2017).

  48. 48.

    Kug, J.-S. et al. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 8, 759–762 (2015).

  49. 49.

    Harsch, M. A. et al. Moving forward: insights and applications of moving-habitat models for climate change ecology. J. Ecol. 105, 1169–1181 (2017).

  50. 50.

    Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 140, 36–45 (2014).

  51. 51.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

  52. 52.

    Dierschke, H. On the recording and presentation of phenological phenomena in plant communities (trans. Wessell, R. E. & Talbot, S. S.). In International Symposium for Vegetation Science (IVV, 1972).

  53. 53.

    Congalton, R. G. & Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices (CRC, 2002).

  54. 54.

    Altman, D. G. Practical Statistics for Medical Research (CRC, 1991).

  55. 55.

    Stata v.13.0 (Stata Corporation, 2013).

  56. 56.

    Williamson, S. N., Hik, D. S., Gamon, J. A., Kavanaugh, J. L. & Koh, S. Evaluating cloud contamination in clear-sky MODIS TERRA daytime land surface temperatures using ground-based meteorology station observations. J. Clim. 26, 1551–1560 (2013).

  57. 57.

    Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N. & Santos, A. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ. 124, 108–121 (2012).

  58. 58.

    Rhee, J. & Im, J. Estimating high spatial resolution air temperature for regions with limited in situ data using MODIS products. Remote Sens. 6, 7360–7378 (2014).

  59. 59.

    Winscanopy v.2006c (Regent Instruments, 2006).

  60. 60.

    Linke, J. et al. The influence of patch-delineation mismatches on multi-temporal landscape pattern analysis. Landscape Ecol. 24, 157–170 (2009).

  61. 61.

    Zorer, R. et al. Daily MODIS land surface temperature data for the analysis of the heat requirements of grapevine varieties. IEEE Trans. Geosci. Remote Sens. 51, 2128–2135 (2013).

  62. 62.

    Neteler, M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens. 2, 333–351 (2010).

  63. 63.

    Mostovoy, G. V., King, R. L., Reddy, K. R., Kakani, V. G. & Filippova, M. G. Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi. GISci. Remote Sens. 43, 78–110 (2006).

  64. 64.

    Snyder, R. L. Hand calculating degree days. Agric. For. Meteorol. 35, 353–358 (1985).

  65. 65.

    Roltsch, W. J., Zalom, F. G., Strawn, A. J., Strand, J. F. & Pitcairn, M. J. Evaluation of several degree-day estimation methods in California climates. Int. J. Biometeorol. 42, 169–176 (1999).

  66. 66.

    McMaster, G. S. & Wilhelm, W. W. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87, 291–300 (1997).

  67. 67.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  68. 68.

    Python Language Reference v.2.7.0 (PythonLabs, 2010).

  69. 69.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  70. 70.

    Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).

  71. 71.

    Roberts, D. R., Nielsen, S. E. & Stenhouse, G. B. Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes. Ecol. Appl. 24, 1144–1154 (2014).

  72. 72.

    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).

  73. 73.

    Roberts, D. R. et al. Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).

  74. 74.

    Barry, S. & Elith, J. Error and uncertainty in habitat models. J. Appl. Ecol. 43, 413–423 (2006).

  75. 75.

    Norby, R. J., Hartz-Rubin, J. S. & Verbrugge, M. J. Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Glob. Change Biol. 9, 1792–1801 (2003).

  76. 76.

    Sherry, R. A. et al. Divergence of reproductive phenology under climate warming. Proc. Natl Acad. Sci. USA 104, 198–202 (2007).

  77. 77.

    Clark, J. S., Salk, C., Melillo, J. & Mohan, J. Tree phenology responses to winter chilling, spring warming, at north and south range limits. Func. Ecol. 28, 1344–1355 (2014).

  78. 78.

    Kopp, C. W. & Cleland, E. E. A. A range-expanding shrub species alters plant phenological response to experimental warming. PLoS ONE 10, 0139029 (2015).

  79. 79.

    van Oldenborgh, G. J. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Annex 1 (IPCC, Cambridge Univ. Press, 2013).

  80. 80.

    Way, D. A. & Montgomery, R. A. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38, 1725–1736 (2015).

Download references

Acknowledgements

The authors thank Alberta Innovates Biosolutions, the many partners of the Foothills Research Institute Grizzly Bear programme and programme lead G. Stenhouse for their generous funding and logistical support. Further thanks go to J. Woosaree, J. Newman and the staff at InnoTech Alberta for facilitating the growth-chamber experiments; R. Snyder for input on deriving base temperatures; and the NASA LP DAAC for access to the MODIS LST products. Additional funding support was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Discovery Grant to G.J.M., Alberta Innovates, the University of Calgary and the Vanier Canada Graduate Scholarships Programme.

Author information

Affiliations

  1. Department of Geography, University of Calgary, Calgary, Alberta, Canada

    • David N. Laskin
    • , Gregory J. McDermid
    • , Shawn J. Marshall
    • , David R. Roberts
    •  & Alessandro Montaghi
  2. Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada

    • Scott E. Nielsen

Authors

  1. Search for David N. Laskin in:

  2. Search for Gregory J. McDermid in:

  3. Search for Scott E. Nielsen in:

  4. Search for Shawn J. Marshall in:

  5. Search for David R. Roberts in:

  6. Search for Alessandro Montaghi in:

Contributions

D.N.L., G.J.M., S.E.N. and S.J.M. conceived the study design. G.J.M., S.E.N. and S.J.M. supervised the analysis. D.N.L performed the data collection and experiments. S.E.N. and D.N.L developed the statistical analysis. D.R.R. produced the SDMs and downscaled the RCP4.5 anomaly surface. A.M. wrote the code for automating the MODIS LST image processing and analysis and D.N.L. wrote the manuscript. All authors contributed to manuscript editing.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to David N. Laskin.

Supplementary information

  1. Supplementary Information

    Supplementary Fig. 1

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41558-019-0454-4