Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reconciling opposing Walker circulation trends in observations and model projections


A strengthening of the Pacific Walker circulation (PWC) over recent decades triggered an intense debate on the validity of model-projected weakening of the PWC in response to anthropogenic warming. However, limitations of in situ observations and reanalysis datasets have hindered an unambiguous attribution of PWC changes to either natural or anthropogenic causes. Here, by conducting a comprehensive analysis based on multiple independent observational records, including satellite observations along with a large ensemble of model simulations, we objectively determine the relative contributions of internal variability and anthropogenic warming to the emergence of long-term PWC trends. Our analysis shows that the satellite-observed changes differ considerably from the model ensemble-mean changes, but they also indicate substantially weaker strengthening than implied by the reanalyses. Furthermore, some ensemble members are found to reproduce the observed changes in the tropical Pacific. These findings clearly reveal a dominant role of internal variability on the recent strengthening of the PWC.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Model-simulated forced response of PWC to anthropogenic warming.
Fig. 2: Comparison of model-simulated PWC changes with reanalyses and in situ observations.
Fig. 3: Model-simulated versus satellite-observed PWC changes.
Fig. 4: Model-simulated versus observed PWC intensity changes over the period 1979–2014.
Fig. 5: Impacts of internal variability on the PWC changes over the period 1979–2014.

Data availability

The CESM Large Ensemble Project simulation output can be obtained from The CMIP5 model output analysed in this study is available from the Earth System Grid Federation server ( HadSLP2 data can be downloaded from the Met Office Hadley Centre ( WASWind data are available from A bias-corrected version of EECRA data can be obtained from ref. 38. HIRS channel 12 brightness temperature data can be downloaded from a NOAA website ( ERA-Interim and ERA-20C reanalysis data are accessible via the ECMWF data server ( ECMWF ORA-S4 data can be obtained from the University of Hamburg Integrated Climate Data Center ( MERRA-2 reanalysis data are available from the NASA Goddard Earth Sciences Data and Information Services Center ( JRA-55 reanalysis data are accessible via the JMA Data Dissemination System ( NOAA Interpolated OLR data, NOAA 20th Century Reanalysis V2c data, ERSST version 5 SST data and GPCP precipitation data are available from the NOAA/OAR/ESRL PSD website (,, and


  1. 1.

    Bayr, T., Dommenget, D., Martin, T. & Power, S. B. The eastward shift of the Walker circulation in response to global warming and its relationship to ENSO variability. Clim. Dynam. 43, 2747–2763 (2014).

    Article  Google Scholar 

  2. 2.

    Zhang, M. & Song, H. Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophys. Res. Lett. 33, L12701 (2006).

    Article  Google Scholar 

  3. 3.

    Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Article  Google Scholar 

  5. 5.

    Power, S. B. & Kociuba, G. What caused the observed twentieth-century weakening of the Walker circulation? J. Clim. 24, 6501–6514 (2011).

    Article  Google Scholar 

  6. 6.

    DiNezio, P. N., Vecchi, G. A. & Clement, A. C. Detectability of changes in the Walker circulation in response to global warming. J. Clim. 26, 4038–4048 (2013).

    Article  Google Scholar 

  7. 7.

    Kociuba, G. & Power, S. B. Inability of CMIP5 models to simulate recent strengthening of the Walker circulation: implications for projections. J. Clim. 28, 20–35 (2015).

    Article  Google Scholar 

  8. 8.

    Knutson, T. R. & Manabe, S. Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J. Clim. 8, 2181–2199 (1995).

    Article  Google Scholar 

  9. 9.

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  10. 10.

    Ma, J., Xie, S.-P. & Kosaka, Y. Mechanisms for tropical tropospheric circulation change in response to global warming. J. Clim. 25, 2979–2994 (2012).

    Article  Google Scholar 

  11. 11.

    Meng, Q. et al. Twentieth century Walker Circulation change: data analysis and model experiments. Clim. Dynam. 38, 1757–1773 (2012).

    Article  Google Scholar 

  12. 12.

    Tokinaga, H., Xie, S.-P., Deser, C., Kosaka, Y. & Okumura, Y. M. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491, 439–443 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Sandeep, S., Stordal, F., Sardeshmukh, P. D. & Compo, G. P. Pacific Walker circulation variability in coupled and uncoupled climate models. Clim. Dynam. 43, 103–117 (2014).

    Article  Google Scholar 

  14. 14.

    Deser, C., Phillips, A. S. & Alexander, M. A. Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett. 37, L10701 (2010).

    Article  Google Scholar 

  15. 15.

    Sohn, B. J. & Park, S.-C. Strengthened tropical circulations in past three decades inferred from water vapor transport. J. Geophys. Res. 115, D15112 (2010).

    Article  Google Scholar 

  16. 16.

    L’Heureux, M. L., Lee, S. & Lyon, B. Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Clim. Change 3, 571–576 (2013).

    Article  Google Scholar 

  17. 17.

    Sohn, B. J., Yeh, S.-W., Schmetz, J. & Song, H.-J. Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Clim. Dynam. 40, 1721–1732 (2013).

    Article  Google Scholar 

  18. 18.

    England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  19. 19.

    McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 4, 888–892 (2014).

    Article  Google Scholar 

  20. 20.

    Takahashi, C. & Watanabe, M. Pacific trade winds accelerated by aerosol forcing over the past two decades. Nat. Clim. Change 6, 768–772 (2016).

    Article  Google Scholar 

  21. 21.

    Bordbar, M. H., Martin, T., Latif, M. & Park, W. Role of internal variability in recent decadal to multidecadal tropical Pacific climate changes. Geophys. Res. Lett. 44, 4246–4255 (2017).

    Article  Google Scholar 

  22. 22.

    Smith, D. M. et al. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Clim. Change 6, 936–940 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Murphy, L. N., Bellomo, K., Cane, M. & Clement, A. The role of historical forcings in simulating the observed Atlantic multidecadal oscillation. Geophys. Res. Lett. 44, 2472–2480 (2017).

    Article  Google Scholar 

  24. 24.

    Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble Project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Article  Google Scholar 

  25. 25.

    Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dynam. 38, 527–546 (2012).

    Article  Google Scholar 

  26. 26.

    Meehl, G. A. & Washington, W. M. El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature 382, 56–60 (1996).

    CAS  Article  Google Scholar 

  27. 27.

    Clement, A. C., Seager, R., Cane, M. A. & Zebiak, S. E. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996).

    Article  Google Scholar 

  28. 28.

    DiNezio, P. N. et al. Climate response of the equatorial Pacific to global warming. J. Clim. 22, 4873–4892 (2009).

    Article  Google Scholar 

  29. 29.

    Latif, M. & Keenlyside, N. S. El Niño/Southern Oscillation response to global warming. Proc. Natl Acad. Sci. USA 106, 20578–20583 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  31. 31.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  32. 32.

    Oort, A. H. & Yienger, J. J. Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Clim. 9, 2751–2767 (1996).

    Article  Google Scholar 

  33. 33.

    Compo, G. P. et al. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011).

    Article  Google Scholar 

  34. 34.

    Poli, P. et al. ERA-20C: an atmospheric reanalysis of the twentieth century. J. Clim. 29, 4083–4097 (2016).

    Article  Google Scholar 

  35. 35.

    Allan, R. & Ansell, T. A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Clim. 19, 5816–5842 (2006).

    Article  Google Scholar 

  36. 36.

    Tokinaga, H. & Xie, S.-P. Wave- and anemometer-based sea surface wind (WASWind) for climate change analysis. J. Clim. 24, 267–285 (2011).

    Article  Google Scholar 

  37. 37.

    Eastman, R., Warren, S. G. & Hahn, C. J. Variations in cloud cover and cloud types over the ocean from surface observations, 1954–2008. J. Clim. 24, 5914–5934 (2011).

    Article  Google Scholar 

  38. 38.

    Bellomo, K. & Clement, A. C. Evidence for weakening of the Walker circulation from cloud observations. Geophys. Res. Lett. 42, 7758–7766 (2015).

    Article  Google Scholar 

  39. 39.

    Trenberth, K. E., Stepaniak, D. P., Hurrell, J. W. & Fiorino, M. Quality of reanalyses in the tropics. J. Clim. 14, 1499–1510 (2001).

    Article  Google Scholar 

  40. 40.

    Bengtsson, L., Hagemann, S. & Hodges, K. I. Can climate trends be calculated from reanalysis data? J. Geophys. Res. 109, D11111 (2004).

    Article  Google Scholar 

  41. 41.

    Soden, B. J. & Fu, R. A satellite analysis of deep convection, upper-tropospheric humidity, and the greenhouse effect. J. Clim. 8, 2333–2351 (1995).

    Article  Google Scholar 

  42. 42.

    Chung, E.-S., Soden, B. J., Sohn, B.-J. & Schmetz, J. Model‐simulated humidity bias in the upper troposphere and its relation to the large‐scale circulation. J. Geophys. Res. 116, D10110 (2011).

    Article  Google Scholar 

  43. 43.

    Plesca, E., Grützun, V. & Buehler, S. A. How robust is the weakening of the Pacific Walker circulation in CMIP5 idealized transient climate simulations? J. Clim. 31, 81–97 (2018).

    Article  Google Scholar 

  44. 44.

    Adler, R. F. et al. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).

    Article  Google Scholar 

  45. 45.

    Shi, L. & Bates, J. J. Three decades of intersatellite‐calibrated high‐resolution infrared radiation sounder upper tropospheric water vapor. J. Geophys. Res. 116, D04108 (2011).

    Google Scholar 

  46. 46.

    Liebmann, B. & Smith, C. A. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Am. Meteorol. Soc. 77, 1275–1277 (1996).

    Google Scholar 

  47. 47.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  48. 48.

    Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn 93, 5–48 (2015).

    Article  Google Scholar 

  49. 49.

    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article  Google Scholar 

  50. 50.

    Kim, B.-H. & Ha, K.-J. Change in equatorial zonal circulations and precipitation in the context of the global warming and natural modes. Clim. Dynam. 51, 3999–4013 (2018).

    Article  Google Scholar 

  51. 51.

    Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article  Google Scholar 

  52. 52.

    Balmaseda, M. A., Mogensen, K. & Weaver, A. T. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 139, 1132–1161 (2013).

    Article  Google Scholar 

  53. 53.

    Soden, B. J. & Bretherton, F. P. Upper tropospheric relative humidity from the GOES 6.7 µm channel: method and climatology for July 1987. J. Geophys. Res. 98, 16669–16688 (1993).

    Article  Google Scholar 

  54. 54.

    Chung, E.-S., Soden, B. J., Huang, X., Shi, L. & John, V. O. An assessment of the consistency between satellite measurements of upper tropospheric water vapor. J. Geophys. Res. Atmos. 121, 2874–2887 (2016).

    Article  Google Scholar 

  55. 55.

    John, V. O. et al. Upper tropospheric humidity. Bull. Am. Meteorol. Soc. 98, S25–S26 (2017).

    Google Scholar 

  56. 56.

    Hocking, J., et al. RTTOV v.10 Users Guide (NWP SAF, EUMETSAT, 2011).

  57. 57.

    Schwendike, J. et al. Local partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations. J. Geophys. Res. Atmos. 119, 1322–1339 (2014).

    Article  Google Scholar 

  58. 58.

    Weatherhead, E. C. et al. Factors affecting the detection of trends: statistical considerations and applications to environmental data. J. Geophys. Res. 103, 17149–17161 (1998).

    Article  Google Scholar 

Download references


The authors thank the National Center for Atmospheric Research for providing the CESM Large Ensemble Project output. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for the CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led the development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. E.-S.C., A.T. and K.-J.H. were supported by Institute for Basic Science under grant IBS-R028-D1. B.J.S. was supported by grants from the NOAA Climate Program Office.

Author information




E.-S.C., A.T. and B.J.S. designed the study, performed the analysis and wrote the manuscript. K.-J.H., L.S. and V.O.J. contributed to the writing of the manuscript. All authors contributed to interpreting results and improvements of the manuscript.

Corresponding author

Correspondence to Eui-Seok Chung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information Nature Climate Change thanks Remy Roca, Tobias Bayr and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chung, ES., Timmermann, A., Soden, B.J. et al. Reconciling opposing Walker circulation trends in observations and model projections. Nat. Clim. Chang. 9, 405–412 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing