Article | Published:

Reconciling opposing Walker circulation trends in observations and model projections

Nature Climate Change (2019) | Download Citation


A strengthening of the Pacific Walker circulation (PWC) over recent decades triggered an intense debate on the validity of model-projected weakening of the PWC in response to anthropogenic warming. However, limitations of in situ observations and reanalysis datasets have hindered an unambiguous attribution of PWC changes to either natural or anthropogenic causes. Here, by conducting a comprehensive analysis based on multiple independent observational records, including satellite observations along with a large ensemble of model simulations, we objectively determine the relative contributions of internal variability and anthropogenic warming to the emergence of long-term PWC trends. Our analysis shows that the satellite-observed changes differ considerably from the model ensemble-mean changes, but they also indicate substantially weaker strengthening than implied by the reanalyses. Furthermore, some ensemble members are found to reproduce the observed changes in the tropical Pacific. These findings clearly reveal a dominant role of internal variability on the recent strengthening of the PWC.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The CESM Large Ensemble Project simulation output can be obtained from The CMIP5 model output analysed in this study is available from the Earth System Grid Federation server ( HadSLP2 data can be downloaded from the Met Office Hadley Centre ( WASWind data are available from A bias-corrected version of EECRA data can be obtained from ref. 38. HIRS channel 12 brightness temperature data can be downloaded from a NOAA website ( ERA-Interim and ERA-20C reanalysis data are accessible via the ECMWF data server ( ECMWF ORA-S4 data can be obtained from the University of Hamburg Integrated Climate Data Center ( MERRA-2 reanalysis data are available from the NASA Goddard Earth Sciences Data and Information Services Center ( JRA-55 reanalysis data are accessible via the JMA Data Dissemination System ( NOAA Interpolated OLR data, NOAA 20th Century Reanalysis V2c data, ERSST version 5 SST data and GPCP precipitation data are available from the NOAA/OAR/ESRL PSD website (,, and

Additional information

Journal peer review information Nature Climate Change thanks Remy Roca, Tobias Bayr and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Bayr, T., Dommenget, D., Martin, T. & Power, S. B. The eastward shift of the Walker circulation in response to global warming and its relationship to ENSO variability. Clim. Dynam. 43, 2747–2763 (2014).

  2. 2.

    Zhang, M. & Song, H. Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophys. Res. Lett. 33, L12701 (2006).

  3. 3.

    Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).

  4. 4.

    Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

  5. 5.

    Power, S. B. & Kociuba, G. What caused the observed twentieth-century weakening of the Walker circulation? J. Clim. 24, 6501–6514 (2011).

  6. 6.

    DiNezio, P. N., Vecchi, G. A. & Clement, A. C. Detectability of changes in the Walker circulation in response to global warming. J. Clim. 26, 4038–4048 (2013).

  7. 7.

    Kociuba, G. & Power, S. B. Inability of CMIP5 models to simulate recent strengthening of the Walker circulation: implications for projections. J. Clim. 28, 20–35 (2015).

  8. 8.

    Knutson, T. R. & Manabe, S. Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J. Clim. 8, 2181–2199 (1995).

  9. 9.

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

  10. 10.

    Ma, J., Xie, S.-P. & Kosaka, Y. Mechanisms for tropical tropospheric circulation change in response to global warming. J. Clim. 25, 2979–2994 (2012).

  11. 11.

    Meng, Q. et al. Twentieth century Walker Circulation change: data analysis and model experiments. Clim. Dynam. 38, 1757–1773 (2012).

  12. 12.

    Tokinaga, H., Xie, S.-P., Deser, C., Kosaka, Y. & Okumura, Y. M. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491, 439–443 (2012).

  13. 13.

    Sandeep, S., Stordal, F., Sardeshmukh, P. D. & Compo, G. P. Pacific Walker circulation variability in coupled and uncoupled climate models. Clim. Dynam. 43, 103–117 (2014).

  14. 14.

    Deser, C., Phillips, A. S. & Alexander, M. A. Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett. 37, L10701 (2010).

  15. 15.

    Sohn, B. J. & Park, S.-C. Strengthened tropical circulations in past three decades inferred from water vapor transport. J. Geophys. Res. 115, D15112 (2010).

  16. 16.

    L’Heureux, M. L., Lee, S. & Lyon, B. Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Clim. Change 3, 571–576 (2013).

  17. 17.

    Sohn, B. J., Yeh, S.-W., Schmetz, J. & Song, H.-J. Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Clim. Dynam. 40, 1721–1732 (2013).

  18. 18.

    England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

  19. 19.

    McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 4, 888–892 (2014).

  20. 20.

    Takahashi, C. & Watanabe, M. Pacific trade winds accelerated by aerosol forcing over the past two decades. Nat. Clim. Change 6, 768–772 (2016).

  21. 21.

    Bordbar, M. H., Martin, T., Latif, M. & Park, W. Role of internal variability in recent decadal to multidecadal tropical Pacific climate changes. Geophys. Res. Lett. 44, 4246–4255 (2017).

  22. 22.

    Smith, D. M. et al. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Clim. Change 6, 936–940 (2016).

  23. 23.

    Murphy, L. N., Bellomo, K., Cane, M. & Clement, A. The role of historical forcings in simulating the observed Atlantic multidecadal oscillation. Geophys. Res. Lett. 44, 2472–2480 (2017).

  24. 24.

    Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble Project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

  25. 25.

    Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dynam. 38, 527–546 (2012).

  26. 26.

    Meehl, G. A. & Washington, W. M. El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature 382, 56–60 (1996).

  27. 27.

    Clement, A. C., Seager, R., Cane, M. A. & Zebiak, S. E. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996).

  28. 28.

    DiNezio, P. N. et al. Climate response of the equatorial Pacific to global warming. J. Clim. 22, 4873–4892 (2009).

  29. 29.

    Latif, M. & Keenlyside, N. S. El Niño/Southern Oscillation response to global warming. Proc. Natl Acad. Sci. USA 106, 20578–20583 (2009).

  30. 30.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  31. 31.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

  32. 32.

    Oort, A. H. & Yienger, J. J. Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Clim. 9, 2751–2767 (1996).

  33. 33.

    Compo, G. P. et al. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011).

  34. 34.

    Poli, P. et al. ERA-20C: an atmospheric reanalysis of the twentieth century. J. Clim. 29, 4083–4097 (2016).

  35. 35.

    Allan, R. & Ansell, T. A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Clim. 19, 5816–5842 (2006).

  36. 36.

    Tokinaga, H. & Xie, S.-P. Wave- and anemometer-based sea surface wind (WASWind) for climate change analysis. J. Clim. 24, 267–285 (2011).

  37. 37.

    Eastman, R., Warren, S. G. & Hahn, C. J. Variations in cloud cover and cloud types over the ocean from surface observations, 1954–2008. J. Clim. 24, 5914–5934 (2011).

  38. 38.

    Bellomo, K. & Clement, A. C. Evidence for weakening of the Walker circulation from cloud observations. Geophys. Res. Lett. 42, 7758–7766 (2015).

  39. 39.

    Trenberth, K. E., Stepaniak, D. P., Hurrell, J. W. & Fiorino, M. Quality of reanalyses in the tropics. J. Clim. 14, 1499–1510 (2001).

  40. 40.

    Bengtsson, L., Hagemann, S. & Hodges, K. I. Can climate trends be calculated from reanalysis data? J. Geophys. Res. 109, D11111 (2004).

  41. 41.

    Soden, B. J. & Fu, R. A satellite analysis of deep convection, upper-tropospheric humidity, and the greenhouse effect. J. Clim. 8, 2333–2351 (1995).

  42. 42.

    Chung, E.-S., Soden, B. J., Sohn, B.-J. & Schmetz, J. Model‐simulated humidity bias in the upper troposphere and its relation to the large‐scale circulation. J. Geophys. Res. 116, D10110 (2011).

  43. 43.

    Plesca, E., Grützun, V. & Buehler, S. A. How robust is the weakening of the Pacific Walker circulation in CMIP5 idealized transient climate simulations? J. Clim. 31, 81–97 (2018).

  44. 44.

    Adler, R. F. et al. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).

  45. 45.

    Shi, L. & Bates, J. J. Three decades of intersatellite‐calibrated high‐resolution infrared radiation sounder upper tropospheric water vapor. J. Geophys. Res. 116, D04108 (2011).

  46. 46.

    Liebmann, B. & Smith, C. A. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Am. Meteorol. Soc. 77, 1275–1277 (1996).

  47. 47.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

  48. 48.

    Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn 93, 5–48 (2015).

  49. 49.

    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

  50. 50.

    Kim, B.-H. & Ha, K.-J. Change in equatorial zonal circulations and precipitation in the context of the global warming and natural modes. Clim. Dynam. 51, 3999–4013 (2018).

  51. 51.

    Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

  52. 52.

    Balmaseda, M. A., Mogensen, K. & Weaver, A. T. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 139, 1132–1161 (2013).

  53. 53.

    Soden, B. J. & Bretherton, F. P. Upper tropospheric relative humidity from the GOES 6.7 µm channel: method and climatology for July 1987. J. Geophys. Res. 98, 16669–16688 (1993).

  54. 54.

    Chung, E.-S., Soden, B. J., Huang, X., Shi, L. & John, V. O. An assessment of the consistency between satellite measurements of upper tropospheric water vapor. J. Geophys. Res. Atmos. 121, 2874–2887 (2016).

  55. 55.

    John, V. O. et al. Upper tropospheric humidity. Bull. Am. Meteorol. Soc. 98, S25–S26 (2017).

  56. 56.

    Hocking, J., et al. RTTOV v.10 Users Guide (NWP SAF, EUMETSAT, 2011).

  57. 57.

    Schwendike, J. et al. Local partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations. J. Geophys. Res. Atmos. 119, 1322–1339 (2014).

  58. 58.

    Weatherhead, E. C. et al. Factors affecting the detection of trends: statistical considerations and applications to environmental data. J. Geophys. Res. 103, 17149–17161 (1998).

Download references


The authors thank the National Center for Atmospheric Research for providing the CESM Large Ensemble Project output. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for the CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led the development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. E.-S.C., A.T. and K.-J.H. were supported by Institute for Basic Science under grant IBS-R028-D1. B.J.S. was supported by grants from the NOAA Climate Program Office.

Author information


  1. Center for Climate Physics, Institute for Basic Science, Busan, South Korea

    • Eui-Seok Chung
    • , Axel Timmermann
    •  & Kyung-Ja Ha
  2. Pusan National University, Busan, South Korea

    • Eui-Seok Chung
    •  & Axel Timmermann
  3. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA

    • Brian J. Soden
  4. Department of Atmospheric Sciences, Pusan National University, Busan, South Korea

    • Kyung-Ja Ha
  5. National Centers for Environmental Information, NOAA, Asheville, NC, USA

    • Lei Shi
  6. EUMETSAT, Darmstadt, Germany

    • Viju O. John


  1. Search for Eui-Seok Chung in:

  2. Search for Axel Timmermann in:

  3. Search for Brian J. Soden in:

  4. Search for Kyung-Ja Ha in:

  5. Search for Lei Shi in:

  6. Search for Viju O. John in:


E.-S.C., A.T. and B.J.S. designed the study, performed the analysis and wrote the manuscript. K.-J.H., L.S. and V.O.J. contributed to the writing of the manuscript. All authors contributed to interpreting results and improvements of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Eui-Seok Chung.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–5

About this article

Publication history