A pathway design framework for national low greenhouse gas emission development strategies


The Paris Agreement introduces long-term strategies as an instrument to inform progressively more ambitious emission reduction objectives, while holding development goals paramount in the context of national circumstances. In the lead up to the twenty-first Conference of the Parties, the Deep Decarbonization Pathways Project developed mid-century low-emission pathways for 16 countries, based on an innovative pathway design framework. In this Perspective, we describe this framework and show how it can support the development of sectorally and technologically detailed, policy-relevant and country-driven strategies consistent with the Paris Agreement climate goal. We also discuss how this framework can be used to engage stakeholder input and buy-in; design implementation policy packages; reveal necessary technological, financial and institutional enabling conditions; and support global stocktaking and increasing of ambition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The DDPP pathway design framework.

Ivan Pharabod.


  1. 1.

    IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  2. 2.

    IPCC: Summary for Policymakers. in Special Report: Global Warming of 1.5°C (eds Masson-Delmotte, V. et al) (World Meterological Organization, 2018).

  3. 3.

    Winkler, H., Boyd, A., Torres Gunfaus, M. & Raubenheimer, S. Reconsidering development by reflecting on climate change. Int. Environ. Agreem. P. 15, 369–385 (2015).

    Article  Google Scholar 

  4. 4.

    Shukla, P. R., Dhar, S. & Mahapatra, D. Low-carbon society scenarios for India. Clim. Policy 8, 156–176 (2008).

    Article  Google Scholar 

  5. 5.

    Sachs, J. D., Schmidt-Traub, G. & Williams, J. Pathways to zero emissions. Nat. Geosci. 9, 799–801 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Rockström, J. et al. A roadmap for rapid decarbonization. Science 355, 1269–1271 (2017).

    Article  Google Scholar 

  7. 7.

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 387–400 (2014).

    Article  Google Scholar 

  9. 9.

    O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environ. Chang. 42, 169–180 (2017).

    Article  Google Scholar 

  10. 10.

    von Stechow, C. et al. 2 °C and SDGs: united they stand, divided they fall? Environ. Res. Lett. 11, 034022 (2016).

    Article  Google Scholar 

  11. 11.

    Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Calvin, K. et al. The role of Asia in mitigating climate change: Results from the Asia modeling exercise. Energ. Econ. 34, S251–S260 (2012).

    Article  Google Scholar 

  13. 13.

    van der Zwaan, B., Calvin, K. & Clarke, L. Climate mitigation in Latin America: implications for energy and land use. Preface to the special section on the findings of the CLIMACAP-LAMP project. Energy. Econ. 56, 495–498 (2016).

    Article  Google Scholar 

  14. 14.

    Stern, N. Current climate models are grossly misleading. Nature 530, 407–409 (2016).

    Article  Google Scholar 

  15. 15.

    Pindyck, R. S. Climate change policy: what do the models tell us? J. Econ. Lit. 51, 1–23 (2013).

    Article  Google Scholar 

  16. 16.

    Chan, G., Carraro, C., Edenhofer, O., Kolstad, C. & Stavins, R. Reforming the IPCC’s assessment of climate change economics. Clim. Chang. Econ. 7, 1–16 (2016).

    Google Scholar 

  17. 17.

    Geels, F. W., Berkhout, F. & van Vuuren, D. P. Bridging analytical approaches for low-carbon transitions. Nat. Clim. Change 6, 576–583 (2016).

    Article  Google Scholar 

  18. 18.

    Staub-Kaminski, I., Zimmer, A., Jakob, M. & Marschinski, R. Climate policy in practice: a typology of obstacles and implications for integrated assessment modeling. Clim. Chang. Econ. 5, 1440004 (2014).

    Article  Google Scholar 

  19. 19.

    Ackerman, F., DeCanio, S. J., Howarth, R. B. & Sheeran, K. Limitations of integrated assessment models of climate change. Climatic Change 95, 297–315 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Scrieciu, S. Ş., Barker, T. & Ackerman, F. Pushing the boundaries of climate economics: critical issues to consider in climate policy analysis. Ecol. Econ. 85, 155–165 (2013).

    Article  Google Scholar 

  21. 21.

    Van Vuuren, D. P. et al. Alternative pathways to the 1.5 °c target reduce the need for negative emission technologies. Nat. Clim. Change 8, 391–397 (2018).

    Article  Google Scholar 

  22. 22.

    Weyant, J. Some contributions of integrated assessment models of global climate change. Rev. Env. Econ. Policy 11, 115–137 (2017).

    Article  Google Scholar 

  23. 23.

    Pye, S. & Bataille, C. Improving deep decarbonization modelling capacity for developed and developing country contexts. Clim. Policy 16, S27–S46 (2016).

    Article  Google Scholar 

  24. 24.

    Chen, W., Wu, Z., He, J., Gao, P. & Xu, S. Carbon emission control strategies for China: a comparative study with partial and general equilibrium versions of the China MARKAL model. Energy 32, 59–72 (2007).

    Article  Google Scholar 

  25. 25.

    Jiang, K., Zhuang, X., Miao, R. & He, C. China’s role in attaining the global 2°C target. Clim. Policy 13, 55–69 (2013).

    Article  Google Scholar 

  26. 26.

    Smith, J. B. et al. Development and climate change adaptation funding: coordination and integration. Clim. Policy 11, 37–41 (2011).

    Article  Google Scholar 

  27. 27.

    Shukla, P. R. & Chaturvedi, V. Low carbon and clean energy scenarios for India: analysis of targets approach. Energ. Econ. 34, S487–S495 (2012).

    Article  Google Scholar 

  28. 28.

    Fujino, J. et al. Back-casting analysis for 70% emission reduction in Japan by 2050. Clim. Policy 8, 108–124 (2008).

    Article  Google Scholar 

  29. 29.

    Grottera, C., Pereira, A. O. & La Rovere, E. L. Impacts of carbon pricing on income inequality in Brazil. Clim. Dev. 5529, 1–14 (2015).

    Google Scholar 

  30. 30.

    La Rovere, E. L., Burle Dubeux, C., Pereira, A. O. & Wills, W. Brazil beyond 2020: from deforestation to the energy challenge. Clim. Policy 13, 70–86 (2013).

    Article  Google Scholar 

  31. 31.

    La Rovere, E. L., Pereira, A. O., Dubeux, C. B. S. & Wills, W. Climate Change mitigation actions in Brazil. Clim. Dev. 6, 25–33 (2014).

    Article  Google Scholar 

  32. 32.

    Zevallos, P., Takahashi, T. P., Cigaran, M. P. & Coetzee, K. A case study of Peru’s efficient lighting nationally appropriate mitigation action. Clim. Dev. 6, 43–48 (2014).

    Article  Google Scholar 

  33. 33.

    Delgado, R., Cadena, A. I., Espinosa, M., Peña, C. & Salazar, M. A case study on Colombian mitigation actions. Clim. Dev. 6, 12–24 (2014).

    Article  Google Scholar 

  34. 34.

    Sanhueza, J. E. & Ladrón de Guevara, F. A. A case study of Chilean mitigation actions. Clim. Dev. 6, 34–42 (2014).

    Article  Google Scholar 

  35. 35.

    Winkler, H. Long Term Mitigation Scenarios. (Department of Environment Affairs and Tourism, Pretoria, 2007).

    Google Scholar 

  36. 36.

    Tyler, E., Boyd, A. S., Coetzee, K. & Winkler, H. A case study of South African mitigation actions (for the special issue on mitigation actions in five developing countries). Clim. Dev. 6, 49–58 (2014).

    Article  Google Scholar 

  37. 37.

    Mathy, S., Fink, M. & Bibas, R. Rethinking the role of scenarios: Participatory scripting of low-carbon scenarios for France. Energ. Policy 77, 176–190 (2015).

    Article  Google Scholar 

  38. 38.

    Schmid, E. & Knopf, B. Ambitious mitigation scenarios for Germany: a participatory approach. Energ. Policy 51, 662–672 (2012).

    Article  Google Scholar 

  39. 39.

    Strachan, N., Pye, S. & Kannan, R. The iterative contribution and relevance of modelling to UK energy policy. Energ. Policy 37, 850–860 (2009).

    Article  Google Scholar 

  40. 40.

    Usher, W. & Strachan, N. Critical mid-term uncertainties in long-term decarbonisation pathways. Energ. Policy 41, 433–444 (2012).

    Article  Google Scholar 

  41. 41.

    Pye, S., Sabio, N. & Strachan, N. An integrated systematic analysis of uncertainties in UK energy transition pathways. Energ. Policy 87, 673–684 (2015).

    Article  Google Scholar 

  42. 42.

    Chiodi, A. et al. Modelling the impacts of challenging 2050 European climate mitigation targets on Ireland’s energy system. Energ. Policy 53, 169–189 (2013).

    Article  Google Scholar 

  43. 43.

    Samadi, S., Terrapon-Pfaff, J., Lechtenböhmer, S. & Knoop, K. Long-term low greenhouse gas emission development strategies for achieving the 1.5 °C target – insights from a comparison of German bottom-up energy scenarios. Carbon Manag. 3004, 1–14 (2018).

    Google Scholar 

  44. 44.

    Williams, J. H. et al. The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. Science 335, 53–9 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    McCollum, D., Yang, C., Yeh, S. & Ogden, J. Deep greenhouse gas reduction scenarios for California - Strategic implications from the CA-TIMES energy-economic systems model. Energy Strateg. Rev. 1, 19–32 (2012).

    Article  Google Scholar 

  46. 46.

    Paltsev, S., Reilly, J. M., Jacoby, H. D. & Morris, J. F. The cost of climate policy in the United States. Energ. Econ. 31, S235–S243 (2009).

    Article  Google Scholar 

  47. 47.

    Ross, M. T., Fawcett, A. A. & Clapp, C. S. U. S. climate mitigation pathways post-2012: transition scenarios in ADAGE. Energ. Econ. 31, S212–S222 (2009).

    Article  Google Scholar 

  48. 48.

    Tuladhar, S. D., Yuan, M., Bernstein, P., Montgomery, W. D. & Smith, A. A top-down bottom-up modeling approach to climate change policy analysis. Energ. Econ. 31, S223–S234 (2009).

    Article  Google Scholar 

  49. 49.

    Bataille, C., Tu, J. J. & Jaccard, M. Permit sellers, permit buyers: China and Canada’s roles in a global low-carbon society. Clim. Policy 8, S93–S107 (2008).

    Article  Google Scholar 

  50. 50.

    Garibaldi, J. A. et al. Comparative analysis of five case studies: commonalities and differences in approaches to mitigation actions in five developing countries. Clim. Dev. 6, 59–70 (2014).

    Article  Google Scholar 

  51. 51.

    Strachan, N., Foxon, T. & Fujino, J. Low-carbon society (LCS) modelling. Clim. Policy 8, 3–4 (2008).

    Article  Google Scholar 

  52. 52.

    Kainuma, M., Shukla, P. R. & Jiang, K. Framing and modeling of a low carbon society: an overview. Energ. Econ. 34, S316–S324 (2012).

    Article  Google Scholar 

  53. 53.

    Pye, S. et al. Exploring national decarbonization pathways and global energy trade flows: a multi-scale analysis. Clim. Policy 16, 1–18 (2016).

    Article  Google Scholar 

  54. 54.

    Deep Carbonization Pathways Project Pathways To Deep Decarbonization - 2015 Synthesis Report (SDSN & IDDRI, 2015).

  55. 55.

    Bataille, C., Waisman, H., Colombier, M., Segafredo, L. & Williams, J. The Deep Decarbonization Pathways Project (DDPP): insights and emerging issues. Clim. Policy 16, S1–S6 (2016).

    Article  Google Scholar 

  56. 56.

    Bataille, C. et al. The need for national deep decarbonization pathways for effective climate policy. Clim. Policy 16, 7–26 (2016).

    Article  Google Scholar 

  57. 57.

    Argyriou, M. et al. The impact of the Deep Decarbonization Pathways Project (DDPP) on domestic decision-making processes – Lessons from three countries (DDPP, IDDRI, 2016).

  58. 58.

    Bataille, C. The Deep Decarbonization Pathways Project (Long Term Strategies, World Resources Institute, 2018).

  59. 59.

    Cherp, A., Vinichenko, V., Jewell, J., Brutschin, E. & Sovacool, B. Integrating techno-economic, socio-technical and political perspectives on national energy transitions: A meta-theoretical framework. Energ. Res. Soc. Sci. 37, 175–190 (2018).

    Article  Google Scholar 

  60. 60.

    Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Article  Google Scholar 

  61. 61.

    Lempert, R. J. Shaping the next one hundred years: new methods for quantitative, long-term policy analysis. Technol. Forecast. Soc. 71, 305–307 (2003).

    Google Scholar 

  62. 62.

    Morgon, G. & Henrion, M. Uncertainty: A Guide to Dealing With Uncertainty In Quantiative Risk and Policy Analysis (Cambridge Univ. Press, 1990).

  63. 63.

    Mathy, S., Criqui, P., Knoop, K., Fischedick, M. & Samadi, S. Uncertainty management and the dynamic adjustment of deep decarbonization pathways. Clim. Policy 16, S47–S62 (2016).

    Article  Google Scholar 

  64. 64.

    Lempert, R. J. et al. A general, analytic method for generating robust strategies and narrative scenarios. Manag. Sci. 52, 514–528 (2006).

    Article  Google Scholar 

  65. 65.

    Haasnoot, M., Kwakkel, J. H., Walker, W. E. & ter Maat, J. Dynamic adaptive policy pathways: a method for crafting robust decisions for a deeply uncertain world. Glob. Env. Change 23, 485–498 (2013).

    Article  Google Scholar 

  66. 66.

    Maier, H. R. et al. An uncertain future, deep uncertainty, scenarios, robustness and adaptation: how do they fit together? Environ. Modell. Softw. 81, 154–164 (2016).

    Article  Google Scholar 

  67. 67.

    Bataille, C., Sawyer, D. & Melton, N. Pathways to deep decarbonization in Canada (SDSN & IDDRI, 2015).

  68. 68.

    Altieri, K. et al. Pathways to deep decarbonization in South Africa (SDSN & IDDRI, 2015).

  69. 69.

    Virdis, M.-R. et al. Pathways to deep decarbonization in Italy (SDSN & IDDRI, 2015).

  70. 70.

    Shukla, P., Dhar, S., Pathak, M., Mahadevia, D. & Garg, A. Pathways to deep decarbonization in India (SDSN & IDDRI, 2015).

  71. 71.

    Criqui, P., Mathy, S. & Hourcade, J.-C. Pathways to deep decarbonization in France (SDSN & IDDRI, 2015).

  72. 72.

    Kainuma, M., Masui, T., Oshiro, K. & Hibino, G. Pathways to deep decarbonization in Japan (SDSN & IDDRI, 2015).

  73. 73.

    Hillebrandt, K., Samadi, S. & Fischedick, M. Pathways to deep decarbonization in Germany (SDSN & IDDRI, 2015).

  74. 74.

    Liu, Q. et al. Pathways to deep decarbonization in China (SDSN & IDDRI, 2015).

  75. 75.

    Pye, S., Anandarajah, G., Fais, B., McGlade, C. & Strachan, N. Pathways to deep decarbonization in the United Kingdom (SDSN & IDDRI, 2015).

  76. 76.

    Pfenninger, S., Hawkes, A. & Keirstead, J. Energy systems modelling for twenty-first century energy challenges. Renew. Sust. Energ. Rev. 33, 74–86 (2014).

    Article  Google Scholar 

  77. 77.

    Altieri, K. E. et al. Achieving development and mitigation objectives through a decarbonization development pathway in South Africa. Clim. Policy 16, 78–91 (2016).

    Article  Google Scholar 

  78. 78.

    Oshiro, K., Kainuma, M. & Masui, T. Assessing decarbonization pathways and their implications for energy security policies in Japan. Clim. Policy 16, S63–S77 (2016).

    Article  Google Scholar 

  79. 79.

    Denis, A. et al. Pathways to Deep Decarbonization in 2050 – How Australia Can Prosper in a Low Carbon World (SDSN & IDDRI, 2014); http://deepdecarbonization.org/wp-content/uploads/2015/09/AU_DDPP_Report_Final.pdf.

  80. 80.

    La Rovere, E., Gesteira, C., Grottera, C. & Wills, W. Pathways to deep decarbonization in Brazil (SDSN & IDDRI, 2015).

  81. 81.

    Williams, J. et al. Pathways to Deep Decarbonization in the United States (SDSN & IDDRI, 2014).

  82. 82.

    Denis-Ryan, A., Bataille, C. & Jotzo, F. Managing carbon-intensive materials in a decarbonizing world without a global price on carbon. Clim. Policy 16, S110–S128 (2016).

    Article  Google Scholar 

  83. 83.

    Bataille, C. et al. A review of technology and policy deep decarbonization pathway options for making energy intensive industry production consistent with the Paris Agreement. J. Clean. Prod. 187, 960–973 (2018).

    Article  Google Scholar 

  84. 84.

    Bruckner, T. et al. in Climate Change 2014: Mitigation of Climate Change (Edenhofer, O. et al.) 511–597 (IPCC, Cambridge Univ. Press, 2014).

  85. 85.

    McDowall, W. Exploring possible transition pathways for hydrogen energy: a hybrid approach using socio-technical scenarios and energy system modelling. Futures 63, 1–14 (2014).

    Article  Google Scholar 

  86. 86.

    Trutnevyte, E. et al. Linking a storyline with multiple models: A cross-scale study of the UK power system transition. Technol. Forecast. Soc. 89, 26–42 (2014).

    Article  Google Scholar 

  87. 87.

    Robiou Du Pont, Y. et al. Equitable mitigation to achieve the Paris Agreement goals. Nat. Clim. Change 7, 38–43 (2017).

    Article  Google Scholar 

  88. 88.

    Kartha, S. et al. Cascading biases against poorer countries. Nat. Clim. Change 8, 348–349 (2018).

    Article  Google Scholar 

  89. 89.

    Zhang, Y. & Shi, H.-L. From burden-sharing to opportunity-sharing: unlocking the climate negotiations. Clim. Policy 14, 63–81 (2014).

    Article  Google Scholar 

  90. 90.

    Winkler, H. & Rajamani, L. CBDR & RC in a regime applicable to all. Clim. Policy 14, 102–121 (2014).

    Article  Google Scholar 

  91. 91.

    Raupach, M. R. et al. Sharing a quota on cumulative carbon emissions. Nat. Clim. Change 4, (2014).

  92. 92.

    Pan, X., Elzen, M., den, Höhne, N., Teng, F. & Wang, L. Exploring fair and ambitious mitigation contributions under the Paris Agreement goals. Environ. Sci. Pol. 74, 49–56 (2017).

    Article  Google Scholar 

  93. 93.

    Höhne, N., den Elzen, M. & Escalante, D. Regional GHG reduction targets based on effort sharing: a comparison of studies. Clim. Policy 14, 122–147 (2014).

    Article  Google Scholar 

  94. 94.

    UNFCC. Pathways Initiative (2019); http://newsroom.unfccc.int/unfccc-newsroom/high-level-climate-champions-launch-2050-pathways-platform/

  95. 95.

    Boer, R. et al. Pathways to deep decarbonizing agriculture, forest and other land-uses sector in Indonesia (DDPP. 2016).

  96. 96.

    Rosenbloom, D. Pathways: An emerging concept for the theory and governance of low-carbon transitions. Global Environ. Chang. 43, 37–50 (2017).

    Article  Google Scholar 

  97. 97.

    Turnheim, B. et al. Evaluating sustainability transitions pathways: bridging analytical approaches to address governance challenges. Global Environ. Chang. 35, 239–253 (2015).

    Article  Google Scholar 

  98. 98.

    Fortes, P., Alvarenga, A., Seixas, J. & Rodrigues, S. Long-term energy scenarios: Bridging the gap between socio-economic storylines and energy modelling. Technol. Forecast. Soc. 91, 161–178 (2015).

    Article  Google Scholar 

Download references


This paper was supported by the Agence Nationale de la Recherche of the French government through the Investissements d’avenir (grant no. ANR-10-LABX-14-01) programme. The authors gratefully acknowledge the contribution of Ivan Pharabod for the design of Fig. 1.

Author information




H.Wa. and C.B. conceived, drafted and revised the manuscript, and led the underlying analysis as coordinators of the Deep Decarbonization Pathways Project (DDPP). H.Wi and M.C contributed to the conception of the manuscript, the drafting of ‘Backcasting using long-term benchmarks’ and ‘A Paris-compatible pathway design framework’ sections, and to revisions of the manuscript. F.J. and P.S. contributed to the conception of the paper and to revisions of the manuscript. All authors substantively contributed ideas through their active participation in DDPP and critically reviewed the manuscript.

Corresponding author

Correspondence to Henri Waisman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Climate Change thanks Frans Berkhout, Yann Robiou du Pont and other anonymous reviewer(s) for their contributions to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Tables 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Waisman, H., Bataille, C., Winkler, H. et al. A pathway design framework for national low greenhouse gas emission development strategies. Nat. Clim. Chang. 9, 261–268 (2019). https://doi.org/10.1038/s41558-019-0442-8

Download citation

Further reading