Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Learning about urban climate solutions from case studies

Abstract

Climate mitigation research puts increasing emphasis on cities, but much more could be learned from urban case studies. The overall size, geographic scope and topic content of cases remains unknown, resulting in few attempts to synthesise the bottom-up evidence. Here, we use scientometric and machine-learning methods to produce a comprehensive map of the literature. Our database of approximately 4,000 case studies provides a wealth of evidence to search, compare and review. We find that cities in world regions with the highest future mitigation relevance are systematically underrepresented. A map of the evidence allows case studies to be matched with urban typologies in new and more ambitious forms of synthesis, bringing together traditionally separate strands of qualitative and quantitative urban research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Number of urban climate mitigation case studies, grouped according to city size.
Fig. 2: Size bias in urban mitigation case study research.
Fig. 3: Global coverage of urban case studies.
Fig. 4: Number of mitigation studies by city and topic.
Fig. 5: Bringing together case study evidence and typologies.

Data availability

The full list of case studies is provided in Supplementary Dataset 1.

References

  1. 1.

    Acuto, M., Parnell, S. & Seto, K. C. Building a global urban science. Nat. Sustain. 1, 2–4 (2018).

    Article  Google Scholar 

  2. 2.

    Acuto, M. & Susan, P. Leave no city behind. Science 352, 873 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Minx, J. C., Callaghan, M., Lamb, W. F., Garard, J. & Edenhofer, O. Learning about climate change solutions in the IPCC and beyond. Environ. Sci. Policy 77, 252–259 (2017).

    Article  Google Scholar 

  4. 4.

    Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P. & Seto, K. C. Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc. Natl Acad. Sci. USA 112, 6283–6288 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Grandin, J., Haarstad, H., Kjærås, K. & Bouzarovski, S. The politics of rapid urban transformation. Curr. Opin. Environ. Sustain. 31, 16–22 (2018).

    Article  Google Scholar 

  6. 6.

    Lamb, W. F., Callaghan, M. W., Creutzig, F., Khosla, R. & Minx, J. C. The literature landscape on 1.5 °C climate change and cities. Curr. Opin. Environ. Sustain. 30, 26–34 (2018).

    Article  Google Scholar 

  7. 7.

    World Urbanization Prospects: The 2018 Revision. (UN DESA, 2018).

  8. 8.

    Kartha, S. et al. Cascading biases against poorer countries. Nat. Clim. Change 8, 348–349 (2018).

    Article  Google Scholar 

  9. 9.

    O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).

    Article  Google Scholar 

  10. 10.

    Gonzalez-Brambila, C. N., Reyes-Gonzalez, L., Veloso, F. & Perez-Angón, M. A. The scientific impact of developing nations. PLoS ONE 11, (2016).

  11. 11.

    Wiedenhofer, D., Lenzen, M. & Steinberger, J. K. Energy requirements of consumption: urban form, climatic and socio-economic factors, rebounds and their policy implications. Energ. Policy 63, 696–707 (2013).

    Article  Google Scholar 

  12. 12.

    Creutzig, F. et al. Urban infrastructure choices structure climate solutions. Nat. Clim. Change 6, 1054 (2016).

    Article  Google Scholar 

  13. 13.

    Creutzig, F. How fuel prices determine public transport infrastructure, modal shares and urban form. Urban Clim. 10, 63–76 (2014).

    Article  Google Scholar 

  14. 14.

    Steinberg, P. F. Can we generalize from case studies? Glob. Environ. Polit. 15, 152–175 (2015).

    Article  Google Scholar 

  15. 15.

    Flyvbjerg, B. Five misunderstandings about case-study research. Qual. Inq. 12, 219–245 (2006).

    Article  Google Scholar 

  16. 16.

    Lijphart, A. Comparative politics and the comparative method. Am. Polit. Sci. Rev. 65, 682–693 (1971).

    Article  Google Scholar 

  17. 17.

    Lind, A. & Espegren, K. The use of energy system models for analysing the transition to low-carbon cities – the case of Oslo. Energy Strateg. Rev. 15, 44–56 (2017).

    Article  Google Scholar 

  18. 18.

    Feng, K., Hubacek, K., Sun, L. & Liu, Z. Consumption-based CO2 accounting of China’s megacities: the case of Beijing, Tianjin, Shanghai and Chongqing. Ecol. Indic. 47, 26–31 (2014).

    Article  Google Scholar 

  19. 19.

    Pichler, P. P. et al. Reducing urban greenhouse gas footprints. Sci. Rep. 7, 1–11 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Romero-Lankao, P. & Hardoy, J. in The Urban Climate Challenge: Rethinking the Role of Cities in the Global Climate Regime (eds. Johnson, C., Toly, N. & Schroeder, H.) 181–204 (Routledge, London, 2015).

  21. 21.

    Creutzig, F., Mühlhoff, R. & Römer, J. Decarbonizing urban transport in European cities: four cases show possibly high co-benefits. Environ. Res. Lett. 7, 044042 (2012).

    Article  Google Scholar 

  22. 22.

    C40 Cities Climate Leadership Group. C40 Cities. (2017). Available at: http://www.c40.org/. (Accessed: 10th November 2017)

  23. 23.

    Urban transition insights from industrial legacy cities (ICLEI - Local Governments for Sustainability, 2018).

  24. 24.

    Nangini, C. et al. A global dataset of CO2 emissions and ancillary data related to emissions for 343 cities. Sci. Data 6, 180280 (2018).

    Article  Google Scholar 

  25. 25.

    Global Climate Action NAZCA (UNFCCC, accessed 26 November 2018); http://climateaction.unfccc.int/

  26. 26.

    Reckien, D. et al. How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. J. Clean. Prod. 191, 207–219 (2018).

    Article  Google Scholar 

  27. 27.

    Reckien, D. et al. Climate change response in Europe: what’s the reality? Analysis of adaptation and mitigation plans from 200 urban areas in 11 countries. Clim. Change 122, 331–340 (2014).

    Article  Google Scholar 

  28. 28.

    Castán Broto, V. & Bulkeley, H. A survey of urban climate change experiments in 100 cities. Glob. Environ. Chang. 23, 92–102 (2013).

    Article  Google Scholar 

  29. 29.

    Bartlett, S. & Satterthwaite, D. Cities on a Finite Planet: Towards transformative responses to climate change. (Routledge, London, 2016).

    Book  Google Scholar 

  30. 30.

    Rosenzweig, C. et al. ARC3.2 Summary for City Leaders (Urban Climate Change Research Network, Columbia University, New York, 2015).

  31. 31.

    Sovacool, B. K. & Brown, M. A. Twelve metropolitan carbon footprints: a preliminary comparative global assessment. Energ. Policy 38, 4856–4869 (2010).

    Article  Google Scholar 

  32. 32.

    Baiocchi, G., Creutzig, F., Minx, J. & Pichler, P. P. A spatial typology of human settlements and their CO2 emissions in England. Glob. Environ. Chang. 34, 13–21 (2015).

    Article  Google Scholar 

  33. 33.

    Moran, D. et al. Carbon footprints of 13 000 cities. Environ. Res. Lett. 13, 064041 (2018).

    Article  Google Scholar 

  34. 34.

    Sustainable Urban Systems Subcommittee. Sustainable Urban Systems: Articulating a Long-Term Convergence Research Agenda (Advisory Committee for Environmental Research and Education, 2018).

  35. 35.

    Resilient Cities Report 2018 (ICLEI, 2018).

  36. 36.

    Grubler, A. et al. in Global Energy Assessment: Toward a Sustainable Future (eds Johansson, T. B. et al) 1307–1400 (Cambridge Univ. Press, Cambridge, 2012).

  37. 37.

    Seto C., K. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al) 923–1000 (IPCC, Cambridge Univ. Press, 2014).

  38. 38.

    UCCRN. Climate change and cities: First assessment report of the urban climate change research network. (Cambridge Univ. Press, 2011).

  39. 39.

    Gaunt, M., Rye, T. & Allen, S. Public acceptability of road user charging: the case of Edinburgh and the 2005 referendum. Transp. Rev. 27, 85–102 (2007).

    Article  Google Scholar 

  40. 40.

    Schaller, B. New York City’s congestion pricing experience and implications for road pricing acceptance in the United States. Transp. Policy 17, 266–273 (2010).

    Article  Google Scholar 

  41. 41.

    Berrang-Ford, L., Pearce, T. & Ford, J. D. Systematic review approaches for climate change adaptation research. Reg. Environ. Chang. 15, 755–769 (2015).

    Article  Google Scholar 

  42. 42.

    Sorrell, S. Improving the evidence base for energy policy: the role of systematic reviews. Energ. Policy 35, 1858–1871 (2007).

    Article  Google Scholar 

  43. 43.

    Haddaway, N. R. & Macura, B. The role of reporting standards in producing robust literature reviews. Nat. Clim. Chang. 8, 444–453 (2018).

    Article  Google Scholar 

  44. 44.

    Kastner, M., Antony, J., Soobiah, C., Straus, S. E. & Tricco, A. C. Conceptual recommendations for selecting the most appropriate knowledge synthesis method to answer research questions related to complex evidence. J. Clin. Epidemiol. 73, 43–49 (2016).

    Article  Google Scholar 

  45. 45.

    Srivastava, A., Van Passel, S. & Laes, E. Assessing the success of electricity demand response programs: a meta-analysis. Energy Res. Soc. Sci. 40, 110–117 (2018).

    Article  Google Scholar 

  46. 46.

    Francis, L. F. M. & Jensen, M. B. Benefits of green roofs: A systematic review of the evidence for three ecosystem services. Urban For. Urban Green. 28, 167–176 (2017).

    Article  Google Scholar 

  47. 47.

    Song, X. P., Tan, P. Y., Edwards, P. & Richards, D. The economic benefits and costs of trees in urban forest stewardship: a systematic review. Urban For. Urban Green. 29, 162–170 (2018).

    Article  Google Scholar 

  48. 48.

    Gota, S., Huizenga, C., Peet, K., Medimorec, N. & Bakker, S. Decarbonising transport to achieve Paris Agreement targets. Energy Effic. 12, 363–386 (2018).

    Article  Google Scholar 

  49. 49.

    Huang, P. & Castán Broto, V. Interdependence between urban processes and energy transitions: the urban energy transitions (DUET) framework. Environ. Innov. Soc. Transitions 28, 35–45 (2018).

    Article  Google Scholar 

  50. 50.

    Newig, J. & Fritsch, O. The case survey method and applications in political science. in APSA 2009 Meeting (APSA, 2009).

  51. 51.

    Nijkamp, P. & Pepping, G. A meta-analytical evaluation of sustainable city initiatives. Urban Stud. 35, 1481–1500 (1998).

    Article  Google Scholar 

  52. 52.

    Haddaway, N. R., Bernes, C., Jonsson, B. G. & Hedlund, K. The benefits of systematic mapping to evidence-based environmental management. Ambio 45, 613–620 (2016).

    Article  Google Scholar 

  53. 53.

    James, K. L., Randall, N. P. & Haddaway, N. R. A methodology for systematic mapping in environmental sciences. Environ. Evid. 5, 1–13 (2016).

    Article  Google Scholar 

  54. 54.

    Godfrey, N. & Savage, R. Future Proofing Cities: risks and opportunities for inclusive urban growth in developing countries. (Atkins, UK Department for International Development, 2013).

  55. 55.

    Creutzig, F. et al. Upscaling urban data science for global climate solutions. Glob. Sustain. 2, 1–25 (2019).

    Article  Google Scholar 

  56. 56.

    Louf, R. & Barthelemy, M. A typology of street patterns. J. R. Soc. Interface 11, 20140924 (2014).

    Article  Google Scholar 

  57. 57.

    Bennett, A. & Elman, C. Qualitative research: recent developments in case study methods. Annu. Rev. Polit. Sci. 9, 455–476 (2006).

    Article  Google Scholar 

  58. 58.

    Glaeser, E. L. & Kahn, M. E. The greenness of cities: carbon dioxide emissions and urban development. J. Urban Econ. 67, 404–418 (2010).

    Article  Google Scholar 

  59. 59.

    Seto, K. C., Golden, J. S., Alberti, M. & Turner, B. L. Sustainability in an urbanizing planet. Proc. Natl Acad. Sci. USA 114, 201606037 (2017).

    Article  Google Scholar 

  60. 60.

    McPhearson, T. et al. Scientists must have a say in the future of cities. Nature 538, 165–166 (2016).

    CAS  Article  Google Scholar 

  61. 61.

    Solecki, W. et al. City transformations in a 1.5 °C warmer world. Nat. Clim. Chang. 8, 177–185 (2018).

    Article  Google Scholar 

  62. 62.

    Ürge-Vorsatz, D. et al. Locking in positive climate responses in cities. Nat. Clim. Chang. 8, 174–177 (2018).

    Article  Google Scholar 

  63. 63.

    Nagendra, H., Bai, X., Brondizio, E. S. & Lwasa, S. The urban south and the predicament of global sustainability. Nat. Sustain. 1, 341–349 (2018).

    Article  Google Scholar 

  64. 64.

    IPCC: Summary for Policymakers in Special Report: Global Warming of 1.5 o C (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2018).

  65. 65.

    Nagendra, H. The global south is rich in sustainability lessons that students deserve to hear. Nature 557, 485–488 (2018).

    CAS  Article  Google Scholar 

  66. 66.

    Vogel, B. & Henstra, D. Studying local climate adaptation: a heuristic research framework for comparative policy analysis. Glob. Environ. Chang. 31, 110–120 (2015).

    Article  Google Scholar 

  67. 67.

    Margulies, J. D., Magliocca, N. R., Schmill, M. D. & Ellis, E. C. Ambiguous geographies: connecting case study knowledge with global change science. Ann. Am. Assoc. Geogr. 106, 572–596 (2016).

    Google Scholar 

  68. 68.

    Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  69. 69.

    Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–91 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

M.W.C. acknowledges financial support from the Heinrich Böll Foundation.

Author information

Affiliations

Authors

Contributions

W.F.L., F.C. and J.C.M. designed the research. W.F.L. and M.W.C. performed the analysis. W.F.L. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to William F. Lamb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Climate Change thanks Brenna Walsh and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Tables 1–5 and Supplementary References.

Supplementary Dataset 1

The data sheet contains the full list of case studies, with duplicate entries where more than one city is mentioned in an abstract.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lamb, W.F., Creutzig, F., Callaghan, M.W. et al. Learning about urban climate solutions from case studies. Nat. Clim. Chang. 9, 279–287 (2019). https://doi.org/10.1038/s41558-019-0440-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing