Prediction of unprecedented biological shifts in the global ocean

Article metrics


Impermanence is an ecological principle1 but there are times when changes occur nonlinearly as abrupt community shifts (ACSs) that transform the ecosystem state and the goods and services it provides2. Here, we present a model based on niche theory3 to explain and predict ACSs at the global scale. We test our model using 14 multi-decadal time series of marine metazoans from zooplankton to fish, spanning all latitudes and the shelf to the open ocean. Predicted and observed fluctuations correspond, with both identifying ACSs at the end of the 1980s4,5,6,7 and 1990s5,8. We show that these ACSs coincide with changes in climate that alter local thermal regimes, which in turn interact with the thermal niche of species to trigger long-term and sometimes abrupt shifts at the community level. A large-scale ACS is predicted after 2014—unprecedented in magnitude and extent—coinciding with a strong El Niño event and major shifts in Northern Hemisphere climate. Our results underline the sensitivity of the Arctic Ocean, where unprecedented melting may reorganize biological communities5,9, and suggest an increase in the size and consequences of ACS events in a warming world.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Long-term biological changes and ACSs for both the observed community and a simulated pseudo-community in the North Sea.
Fig. 2: Predicted and observed long-term community changes for 14 systems.
Fig. 3: Comparisons of observed and predicted community shifts for all ecoregions combined.
Fig. 4: Predicted long-term variation of ACSs in the global ocean.
Fig. 5: Predicted ACSs and climatic shifts during specific time periods between 1960–2015.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.


  1. 1.

    Boero, F. et al. From biodiversity and ecosystem functioning to the roots of ecological complexity. Ecol. Complex. 1, 101–109 (2004).

  2. 2.

    Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, Princeton, 2009).

  3. 3.

    Hutchinson, G. E. An Introduction to Population Ecology (Yale Univ. Press, New Haven, 1978).

  4. 4.

    Reid, P. C. et al. Global impacts of the 1980s regime shift. Glob. Change Biol. 22, 682–703 (2016).

  5. 5.

    Greene, C. H., Pershing, A. J., Cronin, T. M. & Ceci, N. Arctic climate change and its impacts on the ecology of the North Atlantic. Ecology 89, S24–S38 (2008).

  6. 6.

    Conversi, A. et al. The Mediterranean Sea regime shift at the end of the 1980s, and intriguing parallelisms with other European basins. PLoS ONE 5, 1–15 (2010).

  7. 7.

    Beaugrand, G. et al. Synchronous marine pelagic regime shifts in the Northern Hemisphere. Phil. Trans. R. Soc. B 370, 20130272 (2015).

  8. 8.

    Luczak, C., Beaugrand, G., Jaffré, M. & Lenoir, S. Climate change impact on Balearic Shearwater through a trophic cascade. Biol. Lett. 7, 702–705 (2011).

  9. 9.

    Arctic Council Arctic Resilience Report (Stockholm Environment Institute & Stockholm Resilience Centre, 2016).

  10. 10.

    Conversi, A. et al. A holistic view of marine regime shifts. Phil. Trans. R. Soc. B 370, 20130279 (2015).

  11. 11.

    Möllmann, C. & Diekmann, R. Marine ecosystem regime shifts induced by climate and overfishing: a review for the Northern Hemisphere. Adv. Ecol. Res. 47, 303–347 (2012).

  12. 12.

    Beaugrand, G. Theoretical basis for predicting climate-induced abrupt shifts in the oceans. Phil. Trans. R. Soc. B 370, 20130264 (2015).

  13. 13.

    Mac Nally, R., Albano, C. & Fleishman, E. A scrutiny of the evidence for pressure-induced state shifts in estuarine and nearshore ecosystems. Austral Ecol. 39, 898–906 (2014).

  14. 14.

    Di Lorenzo, E. & Ohman, M. D. A double-integration hypothesis to explain ocean ecosystem response to climate forcing. Proc. Natl Acad. Sci. USA 110, 2496–2499 (2013).

  15. 15.

    Hare, S. R. & Mantua, N. J. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr. 47, 103–145 (2000).

  16. 16.

    Beaugrand, G., Goberville, E., Luczak, C. & Kirby, R. R. Marine biological shifts and climate. Proc. Biol. Sci. 281, 20133350 (2014).

  17. 17.

    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).

  18. 18.

    Beaugrand, G. Marine Biodiversity, Climatic Variability and Global Change (Routledge, London, 2015).

  19. 19.

    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

  20. 20.

    Cloern, J. E. & Jassby, A. D. Drivers of change in estuarine–coastal ecosystems: discoveries from four decades of study in San Francisco Bay. Rev. Geophys. 50, RG4001 (2012).

  21. 21.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).

  22. 22.

    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

  23. 23.

    Di Lorenzo, E. et al. Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanography 26, 68–81 (2014).

  24. 24.

    Beaugrand, G. & Kirby, R. R. Quasi-deterministic responses of marine species to climate change. Clim. Res. 69, 117–128 (2016).

  25. 25.

    Möllmann, C. et al. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea. Glob. Change Biol. 15, 1377–1393 (2009).

  26. 26.

    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).

  27. 27.

    Duchez, A. et al. Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environ. Res. Lett. 11, 074004 (2016).

  28. 28.

    Greene, C. H. North America’s iconic marine species at risk due to unprecedented ocean warming. Oceanography 29, 14–17 (2016).

  29. 29.

    Aarssen, L. W. High productivity in grassland ecosystems: effected by species diversity or productive species? Oikos 80, 183–184 (1997).

  30. 30.

    Boettiger, C. & Hastings, A. Early warning signals and the prosecutor’s fallacy. Proc. R. Soc. B 279, 4734–4739 (2012).

  31. 31.

    Schindler, D. & Hillborn, R. Prediction, precaution and policy under climate change. Science 347, 953–954 (2015).

  32. 32.

    Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

  33. 33.

    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–470 (1996).

  34. 34.

    Longhurst, A. Ecological Geography of the Sea (Academic, London, 1998).

  35. 35.

    Cloern, J. E. et al. Biological communities in San Francisco Bay track large-scale climate forcing over the North Pacific. Geophys. Res. Lett. 37, L21602 (2010).

  36. 36.

    Beaugrand, G. & Kirby, R. R. How do marine species respond to climate change? Theories and observations. Annu. Rev. Mar. Sci. 10, 169–197 (2018).

  37. 37.

    Beaugrand, G., Luczak, C., Goberville, E. & Kirby, R. R. Marine biodiversity and the chessboard of life. PLoS ONE 13, e0194006 (2018).

  38. 38.

    Beaugrand, G., Rombouts, I. & Kirby, R. R. Towards an understanding of the pattern of biodiversity in the oceans. Glob. Ecol. Biogeogr. 22, 440–449 (2013).

  39. 39.

    Ter Braak, C. J. F. Unimodal Models to Relate Species to Environment (DLO-Agricultural Mathematics Group, 1996).

  40. 40.

    Rodionov, S. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. 31, L09204 (2004).

  41. 41.

    Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006).

  42. 42.

    Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).

  43. 43.

    Beaugrand, G., Edwards, M., Brander, K., Luczak, C. & Ibañez, F. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic. Ecol. Lett. 11, 1157–1168 (2008).

  44. 44.

    Frontier, S. Etude de la décroissance des valeurs propres dans une analyse en composantes principales: comparaison avec le modèle du bâton brisé. J. Exp. Mar. Bio. Ecol. 25, 67–75 (1976).

  45. 45.

    Ibanez, F. & Dauvin, J.-C. Shape analysis of temporal ecological processes: long-term changes in English Channel macrobenthic communities. Coenoses 13, 115–129 (1998).

  46. 46.

    Pyper, B. J. & Peterman, R. M. Comparison of methods to account for autocorrelation analyses of fish data. Can. J. Fish. Aquat. Sci. 55, 2127–2140 (1998).

  47. 47.

    Legendre, P. & Legendre, L. Numerical Ecology 2nd edn (Elsevier Science, Amsterdam, 1998).

  48. 48.

    Goberville, E., Beaugrand, G. & Edwards, M. Synchronous response of marine plankton ecosystems to climate in the Northeast Atlantic and the North Sea. J. Mar. Syst. 129, 189–202 (2014).

  49. 49.

    Beaugrand, G. & Ibañez, F. Spatial dependence of pelagic diversity in the North Atlantic Ocean. Mar. Ecol. Prog. Ser. 232, 197–211 (2002).

Download references


This work was supported by the Centre National de la Recherche Scientifique, Research Programme CPER CLIMIBIO (Nord–Pas-de-Calais), regional programme INDICOP (Pas-de-Calais) and ANR project TROPHIK. The authors thank the French Ministère de l’Enseignement Supérieur et de la Recherche, Hauts-de-France Region and European Regional Development Fund for financially supporting this project. We are indebted to P. Notez for help with computer engineering. A.A. and the Antarctic dataset were supported by the World Wildlife Fund, NERC and DEFRA grant number NE/L 003279/1 (Marine Ecosystems Research Programme) and NERC National Capability grant number NE/R015953/1. P.C.R. was also funded by NERC.

Author information

G.B. conceived the study. G.B., A.C., A.A., E.G., J.C. and S.C. compiled the data with input from all co-authors. G.B. analysed the data. G.B. wrote the initial draft or the paper. G.B., A.C., A.A., P.C.R., C.G., E.G., J.C., R.R.K., S.A.O., S.C. and M.E. discussed the results and contributed to writing the paper, with input from all co-authors.

Correspondence to G. Beaugrand.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information Nature Climate Change thanks Adrian Stier and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Supplementary Tables 1–7, Supplementary Figures 1–18, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading