Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prediction of unprecedented biological shifts in the global ocean

Abstract

Impermanence is an ecological principle1 but there are times when changes occur nonlinearly as abrupt community shifts (ACSs) that transform the ecosystem state and the goods and services it provides2. Here, we present a model based on niche theory3 to explain and predict ACSs at the global scale. We test our model using 14 multi-decadal time series of marine metazoans from zooplankton to fish, spanning all latitudes and the shelf to the open ocean. Predicted and observed fluctuations correspond, with both identifying ACSs at the end of the 1980s4,5,6,7 and 1990s5,8. We show that these ACSs coincide with changes in climate that alter local thermal regimes, which in turn interact with the thermal niche of species to trigger long-term and sometimes abrupt shifts at the community level. A large-scale ACS is predicted after 2014—unprecedented in magnitude and extent—coinciding with a strong El Niño event and major shifts in Northern Hemisphere climate. Our results underline the sensitivity of the Arctic Ocean, where unprecedented melting may reorganize biological communities5,9, and suggest an increase in the size and consequences of ACS events in a warming world.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Long-term biological changes and ACSs for both the observed community and a simulated pseudo-community in the North Sea.
Fig. 2: Predicted and observed long-term community changes for 14 systems.
Fig. 3: Comparisons of observed and predicted community shifts for all ecoregions combined.
Fig. 4: Predicted long-term variation of ACSs in the global ocean.
Fig. 5: Predicted ACSs and climatic shifts during specific time periods between 1960–2015.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Boero, F. et al. From biodiversity and ecosystem functioning to the roots of ecological complexity. Ecol. Complex. 1, 101–109 (2004).

    Article  Google Scholar 

  2. Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, Princeton, 2009).

  3. Hutchinson, G. E. An Introduction to Population Ecology (Yale Univ. Press, New Haven, 1978).

  4. Reid, P. C. et al. Global impacts of the 1980s regime shift. Glob. Change Biol. 22, 682–703 (2016).

    Article  Google Scholar 

  5. Greene, C. H., Pershing, A. J., Cronin, T. M. & Ceci, N. Arctic climate change and its impacts on the ecology of the North Atlantic. Ecology 89, S24–S38 (2008).

    Article  Google Scholar 

  6. Conversi, A. et al. The Mediterranean Sea regime shift at the end of the 1980s, and intriguing parallelisms with other European basins. PLoS ONE 5, 1–15 (2010).

    Article  Google Scholar 

  7. Beaugrand, G. et al. Synchronous marine pelagic regime shifts in the Northern Hemisphere. Phil. Trans. R. Soc. B 370, 20130272 (2015).

    Article  Google Scholar 

  8. Luczak, C., Beaugrand, G., Jaffré, M. & Lenoir, S. Climate change impact on Balearic Shearwater through a trophic cascade. Biol. Lett. 7, 702–705 (2011).

    Article  CAS  Google Scholar 

  9. Arctic Council Arctic Resilience Report (Stockholm Environment Institute & Stockholm Resilience Centre, 2016).

  10. Conversi, A. et al. A holistic view of marine regime shifts. Phil. Trans. R. Soc. B 370, 20130279 (2015).

    Article  Google Scholar 

  11. Möllmann, C. & Diekmann, R. Marine ecosystem regime shifts induced by climate and overfishing: a review for the Northern Hemisphere. Adv. Ecol. Res. 47, 303–347 (2012).

    Article  Google Scholar 

  12. Beaugrand, G. Theoretical basis for predicting climate-induced abrupt shifts in the oceans. Phil. Trans. R. Soc. B 370, 20130264 (2015).

    Article  Google Scholar 

  13. Mac Nally, R., Albano, C. & Fleishman, E. A scrutiny of the evidence for pressure-induced state shifts in estuarine and nearshore ecosystems. Austral Ecol. 39, 898–906 (2014).

    Article  Google Scholar 

  14. Di Lorenzo, E. & Ohman, M. D. A double-integration hypothesis to explain ocean ecosystem response to climate forcing. Proc. Natl Acad. Sci. USA 110, 2496–2499 (2013).

    Article  CAS  Google Scholar 

  15. Hare, S. R. & Mantua, N. J. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr. 47, 103–145 (2000).

    Article  Google Scholar 

  16. Beaugrand, G., Goberville, E., Luczak, C. & Kirby, R. R. Marine biological shifts and climate. Proc. Biol. Sci. 281, 20133350 (2014).

    Article  Google Scholar 

  17. Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).

    Article  Google Scholar 

  18. Beaugrand, G. Marine Biodiversity, Climatic Variability and Global Change (Routledge, London, 2015).

  19. Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

    Article  Google Scholar 

  20. Cloern, J. E. & Jassby, A. D. Drivers of change in estuarine–coastal ecosystems: discoveries from four decades of study in San Francisco Bay. Rev. Geophys. 50, RG4001 (2012).

    Article  Google Scholar 

  21. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).

  22. Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    CAS  Google Scholar 

  23. Di Lorenzo, E. et al. Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanography 26, 68–81 (2014).

  24. Beaugrand, G. & Kirby, R. R. Quasi-deterministic responses of marine species to climate change. Clim. Res. 69, 117–128 (2016).

    Article  Google Scholar 

  25. Möllmann, C. et al. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea. Glob. Change Biol. 15, 1377–1393 (2009).

  26. Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).

    Article  Google Scholar 

  27. Duchez, A. et al. Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environ. Res. Lett. 11, 074004 (2016).

    Article  Google Scholar 

  28. Greene, C. H. North America’s iconic marine species at risk due to unprecedented ocean warming. Oceanography 29, 14–17 (2016).

    Article  Google Scholar 

  29. Aarssen, L. W. High productivity in grassland ecosystems: effected by species diversity or productive species? Oikos 80, 183–184 (1997).

    Article  Google Scholar 

  30. Boettiger, C. & Hastings, A. Early warning signals and the prosecutor’s fallacy. Proc. R. Soc. B 279, 4734–4739 (2012).

    Article  Google Scholar 

  31. Schindler, D. & Hillborn, R. Prediction, precaution and policy under climate change. Science 347, 953–954 (2015).

    Article  CAS  Google Scholar 

  32. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

  33. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–470 (1996).

    Article  Google Scholar 

  34. Longhurst, A. Ecological Geography of the Sea (Academic, London, 1998).

  35. Cloern, J. E. et al. Biological communities in San Francisco Bay track large-scale climate forcing over the North Pacific. Geophys. Res. Lett. 37, L21602 (2010).

    Article  Google Scholar 

  36. Beaugrand, G. & Kirby, R. R. How do marine species respond to climate change? Theories and observations. Annu. Rev. Mar. Sci. 10, 169–197 (2018).

    Article  Google Scholar 

  37. Beaugrand, G., Luczak, C., Goberville, E. & Kirby, R. R. Marine biodiversity and the chessboard of life. PLoS ONE 13, e0194006 (2018).

    Article  Google Scholar 

  38. Beaugrand, G., Rombouts, I. & Kirby, R. R. Towards an understanding of the pattern of biodiversity in the oceans. Glob. Ecol. Biogeogr. 22, 440–449 (2013).

    Article  Google Scholar 

  39. Ter Braak, C. J. F. Unimodal Models to Relate Species to Environment (DLO-Agricultural Mathematics Group, 1996).

  40. Rodionov, S. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. 31, L09204 (2004).

    Article  Google Scholar 

  41. Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006).

    Article  CAS  Google Scholar 

  42. Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).

    Article  CAS  Google Scholar 

  43. Beaugrand, G., Edwards, M., Brander, K., Luczak, C. & Ibañez, F. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic. Ecol. Lett. 11, 1157–1168 (2008).

    Article  Google Scholar 

  44. Frontier, S. Etude de la décroissance des valeurs propres dans une analyse en composantes principales: comparaison avec le modèle du bâton brisé. J. Exp. Mar. Bio. Ecol. 25, 67–75 (1976).

    Article  Google Scholar 

  45. Ibanez, F. & Dauvin, J.-C. Shape analysis of temporal ecological processes: long-term changes in English Channel macrobenthic communities. Coenoses 13, 115–129 (1998).

    Google Scholar 

  46. Pyper, B. J. & Peterman, R. M. Comparison of methods to account for autocorrelation analyses of fish data. Can. J. Fish. Aquat. Sci. 55, 2127–2140 (1998).

    Article  Google Scholar 

  47. Legendre, P. & Legendre, L. Numerical Ecology 2nd edn (Elsevier Science, Amsterdam, 1998).

  48. Goberville, E., Beaugrand, G. & Edwards, M. Synchronous response of marine plankton ecosystems to climate in the Northeast Atlantic and the North Sea. J. Mar. Syst. 129, 189–202 (2014).

  49. Beaugrand, G. & Ibañez, F. Spatial dependence of pelagic diversity in the North Atlantic Ocean. Mar. Ecol. Prog. Ser. 232, 197–211 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre National de la Recherche Scientifique, Research Programme CPER CLIMIBIO (Nord–Pas-de-Calais), regional programme INDICOP (Pas-de-Calais) and ANR project TROPHIK. The authors thank the French Ministère de l’Enseignement Supérieur et de la Recherche, Hauts-de-France Region and European Regional Development Fund for financially supporting this project. We are indebted to P. Notez for help with computer engineering. A.A. and the Antarctic dataset were supported by the World Wildlife Fund, NERC and DEFRA grant number NE/L 003279/1 (Marine Ecosystems Research Programme) and NERC National Capability grant number NE/R015953/1. P.C.R. was also funded by NERC.

Author information

Authors and Affiliations

Authors

Contributions

G.B. conceived the study. G.B., A.C., A.A., E.G., J.C. and S.C. compiled the data with input from all co-authors. G.B. analysed the data. G.B. wrote the initial draft or the paper. G.B., A.C., A.A., P.C.R., C.G., E.G., J.C., R.R.K., S.A.O., S.C. and M.E. discussed the results and contributed to writing the paper, with input from all co-authors.

Corresponding author

Correspondence to G. Beaugrand.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information Nature Climate Change thanks Adrian Stier and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Supplementary Tables 1–7, Supplementary Figures 1–18, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaugrand, G., Conversi, A., Atkinson, A. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Chang. 9, 237–243 (2019). https://doi.org/10.1038/s41558-019-0420-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-019-0420-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing