Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios

Abstract

Habitat transformations caused by human land-use change are considered major drivers of ongoing biodiversity loss1,2,3, and their impact on biodiversity is expected to increase further this century4,5,6. Here, we used global decadal land-use projections to year 2070 for a range of shared socioeconomic pathways, which are linked to particular representative concentration pathways, to evaluate potential losses in range-wide suitable habitat and extinction risks for approximately 19,400 species of amphibians, birds and mammals. Substantial declines in suitable habitat are identified for species worldwide, with approximately 1,700 species expected to become imperilled due to land-use change alone. National stewardship for species highlights certain South American, Southeast Asian and African countries that are in particular need of proactive conservation planning. These geographically explicit projections and model workflows embedded in the Map of Life infrastructure are provided to facilitate the scrutiny, improvements and future updates needed for an ongoing and readily updated assessment of changing biodiversity. These forward-looking assessments and informatics tools are intended to support national conservation action and policies for addressing climate change and land-use change impacts on biodiversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Projected land-use change effects on habitat-suitable range (HSR) of example species under projected harmonized land-use change.
Fig. 2: Projected trends in HSR and threat status up-listing based on harmonized land-use change projected under four different SSPs.
Fig. 3: Spatial patterns for 2015–2070.
Fig. 4: Country-level patterns for 2015–2070.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the Supplementary information and at the Map of Life website (https://mol.org).

References

  1. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article  CAS  Google Scholar 

  2. Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    Article  CAS  Google Scholar 

  3. Duraiappah, A. K. et al. Ecosystems and Human Well-being: Biodiversity Synthesis. (World Resources Institute, Washington, DC, 2005.

  4. Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, 1211–1219 (2007).

    Article  CAS  Google Scholar 

  5. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

  6. Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 5–13 (2016).

    Article  Google Scholar 

  7. Rondinini, C. & Visconti, P. Scenarios of large mammal loss in Europe for the 21st century. Conserv. Biol. 29, 1028–1036 (2015).

    Article  Google Scholar 

  8. Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    Article  CAS  Google Scholar 

  9. Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).

    Article  CAS  Google Scholar 

  10. Jetz, W., Sekercioglu, C. H. & Watson, J. E. Ecological correlates and conservation implications of overestimating species geographic ranges. Conserv. Biol. 22, 110–119 (2008).

    Article  Google Scholar 

  11. Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data 5, 180040 (2018).

  12. Hurtt, G., Chini, L., Sahajpal, R. & Frolking, S. Harmonization of global land-use change and management for the period 850–2100. http://luh.umd.edu/ (2016).

  13. Kim, H. et al. A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geosci. Model Dev. https://doi.org/10.5194/gmd-2018-115 (2018).

  14. Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article  Google Scholar 

  15. O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2014).

    Article  Google Scholar 

  16. Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  17. IUCN Standards and Petitions Working Group. Guidelines for Using the IUCN Red List Categories and Criteria. v6.2. Prepared by the Standards and Petitions Working Group of the IUCN SSC Biodiversity Assessments Sub-Committee. https://www.iucnredlist.org/resources/redlistguidelines (2006).

  18. Lawler, J. J. et al. Projected climate‐induced faunal change in the Western hemisphere. Ecology 90, 588–597 (2009).

    Article  Google Scholar 

  19. Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).

    Article  Google Scholar 

  20. Blaustein, A. R., Wake, D. B. & Sousa, W. P. Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conserv. Biol. 8, 60–71 (1994).

    Article  Google Scholar 

  21. Engström, K. et al. Applying Occam’s razor to global agriculture land use change. Environ. Modell. Softw. 75, 212–229 (2016).

    Article  Google Scholar 

  22. Steinbuks, J. & Hertel, T. W. Confronting the food–energy-environment trilemma: global land use in the long run. Environ. Resour. Econ. 63, 545–570 (2016).

    Article  Google Scholar 

  23. Rosa, I. M. et al. Multiscale scenarios for nature futures. Nat. Ecol. Evol. 1, 1416–1419 (2017).

    Article  Google Scholar 

  24. Nixon, A., Fisher, R., Stralberg, D., Bayne, E. & Farr, D. Projected responses of North American grassland songbirds to climate change and habitat availability at their northern range limits in Alberta, Canada. Avian Conserv. Ecol. 11, 1–39 (2016).

    Google Scholar 

  25. Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. P. Roy. Soc. B-Biol. Sci. 285, 20180792 (2018).

    Article  Google Scholar 

  26. Pereira, H. M. & Daily, G. C. Modeling biodiversity dynamics in countryside landscapes. Ecology 87, 1877–1885 (2006).

    Article  Google Scholar 

  27. Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of conservation opportunity in the Brazilian Amazon. Science 337, 228–232 (2012).

    Article  CAS  Google Scholar 

  28. Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).

    Article  CAS  Google Scholar 

  29. Gaston, K. J. & Fuller, R. A. Commonness, population depletion and conservation biology. Trends Ecol. Evol. 23, 14–19 (2008).

    Article  Google Scholar 

  30. Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl Acad. Sci. 113, 11261–11265 (2016).

    Article  CAS  Google Scholar 

  31. Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s mammals. Roy. Soc. Open Sci. 3, 160498 (2016).

    Article  Google Scholar 

  32. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article  CAS  Google Scholar 

  33. IUCN. The IUCN Red List of Threatened Species https://www.iucnredlist.org/ (2015).

  34. Farr, T. G. & Kobrick, M. Shuttle radar topography mission produces a wealth of data. Eos Trans Am. Geophys. Union 81, 583–585 (2000).

    Article  Google Scholar 

  35. Robinson, N., Regetz, J. & Guralnick, R. P. EarthEnv-DEM90: a nearly-global, void-free, multi scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS J. Photogramm. Remote Sens. 87, 57–67 (2104).

    Article  Google Scholar 

  36. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  Google Scholar 

  37. Tropek, R. et al. Comment on ‘high-resolution global maps of 21st-century forest cover change’. Science 344, 981 (2014).

    Article  CAS  Google Scholar 

  38. Lawrence, D. M. et al. The land use model intercomparison project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

    Article  Google Scholar 

  39. Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

    Article  Google Scholar 

  40. Hurlbert, A. H. & White, E. P. Disparity between range map- and survey-based analyses of species richness: patterns, processes and implications. Ecol. Lett. 8, 319–327 (2005).

    Article  Google Scholar 

  41. Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. T. Roy. Soc. B 366, 2633–2641 (2011).

    Article  Google Scholar 

  42. del Hoyo, J., Elliott, A., Sargatal, J. & Christie, D. A. Handbook of the birds of the world. Vol. 1–16 (Lynx Editions, Barcelona, 1992–2011).

  43. Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).

    Article  CAS  Google Scholar 

  44. Gorelick, N. et al. Google Earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article  Google Scholar 

  45. Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).

    Article  Google Scholar 

  46. Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    Article  CAS  Google Scholar 

  47. Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).

    Article  CAS  Google Scholar 

  48. Dent, D. H. & Wright, S. J. The future of tropical species in secondary forests: a quantitative review. Biol. Conserv. 142, 2833–2843 (2009).

    Article  Google Scholar 

  49. Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555–18560 (2007).

    Article  CAS  Google Scholar 

  50. Akçakaya, H. R., Butchart, S. H., Mace, G. M., Stuart, S. N. & Hilton-Taylor, C. R. A. I. G. Use and misuse of the IUCN Red List Criteria in projecting climate change impacts on biodiversity. Glob. Change Biol. 12, 2037–2043 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Ranipeta and J. Malczyk for support on Google Earth Engine analytics, informatics workflows and web visualizations. We also thank R. Alkemade, J. Hilbers, M.E. Andrew, T. Brichieri-Colombi, V. Lukasik and members of the Jetz Lab at Yale for sharing data, input and feedback. This research was supported by a Natural Sciences and Engineering Research Council of Canada grant to R.P.P. and grants no. NSF DEB 1441737, DBI 1262600, DEB 1558568, NASA NNX11AP72G to W.J. Both authors acknowledge support from the Yale Center for Biodiversity and Global Change.

Author information

Authors and Affiliations

Authors

Contributions

W.J. and R.P.P. conceived the study. R.P.P. performed the analysis. W.J. analysed the results. W.J. and R.P.P. wrote the manuscript.

Corresponding author

Correspondence to Walter Jetz.

Additional information

Journal peer review information: Nature Climate Change thanks Richard Corlett and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Powers, R.P., Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 9, 323–329 (2019). https://doi.org/10.1038/s41558-019-0406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-019-0406-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing