Letter | Published:

Southern Hemisphere subtropical drying as a transient response to warming


Climate projections1,2,3 and observations over recent decades4,5 indicate that precipitation in subtropical latitudes declines in response to anthropogenic warming, with significant implications for food production and population sustainability. However, this conclusion is derived from emissions scenarios with rapidly increasing radiative forcing to the year 21001,2, which may represent very different conditions from both past and future ‘equilibrium’ warmer climates. Here, we examine multi-century future climate simulations and show that in the Southern Hemisphere subtropical drying ceases soon after global temperature stabilizes. Our results suggest that twenty-first century Southern Hemisphere subtropical drying is not a feature of warm climates per se, but is primarily a response to rapidly rising forcing and global temperatures, as tropical sea-surface temperatures rise more than southern subtropical sea-surface temperatures under transient warming. Subtropical drying may therefore be a temporary response to rapid warming: as greenhouse gas concentrations and global temperatures stabilize, Southern Hemisphere subtropical regions may experience positive precipitation trends.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information files. The CMIP5 model data used in this study are available in public repositories (for example, at https://esgf-node.llnl.gov/projects/esgf-llnl/). The model data used here were stored on the Australian node of the Earth System Grid (the National Computational Infrastructure). Data associated with the CanESM1 simulation used in this study are available at http://crd-data-donnees-rdc.ec.gc.ca/CCCMA/CanESM1_zero_emission.

Additional information

Journal peer review information: Nature Climate Change thanks Jie He, Hanh Nguyen, Caroline Ummenhofer and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker T. F. et al.) 1029–1136 (Cambridge Univ. Press, 2013).

  2. 2.

    Climate Change in Australia. Information for Australia’s Natural Resource Management Regions Technical Report (CSIRO and Bureau of Meteorology, 2015).

  3. 3.

    Tokarska, K. B., Gillett, N. P., Weaver, A. J., Arora, V. K. & Eby, M. The climate response to five trillion tonnes of carbon. Nat. Clim. Change 6, 851–855 (2016).

  4. 4.

    Cai, W., Cowan, T. & Thatcher, M. Rainfall reductions over Southern Hemisphere semi-arid regions: the role of subtropical dry zone expansion. Sci. Rep. 2, 702 (2012).

  5. 5.

    Nguyen, H., Lucas, C., Evans, E., Timbal, B. & Hanson, L. Expansion of the Southern Hemisphere Hadley Cell in response to greenhouse gas forcing. J. Clim. 28, 8067–8077 (2015).

  6. 6.

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

  7. 7.

    Seager, R., Naik, N. & Vecchi, G. A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 23, 4651–4668 (2010).

  8. 8.

    Seidel, D. J., Fu, Q., Randel, W. J. & Reichler, T. J. Widening of the tropical belt in a changing climate. Nat. Geosci. 1, 21–24 (2008).

  9. 9.

    Scheff, J. & Frierson, D. Twenty-first-century multimodel subtropical precipitation declines are mostly midlatitude shifts. J. Clim. 25, 4330–4347 (2012).

  10. 10.

    Bony, S. et al. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci. 6, 447–451 (2013).

  11. 11.

    He, J. & Soden, B. J. A re-examination of the projected subtropical precipitation decline. Nat. Clim. Change 7, 53–57 (2017).

  12. 12.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

  13. 13.

    Haywood, A. M. et al. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Clim. Past 9, 191–209 (2013).

  14. 14.

    Salzmann, U., Haywood, A. M., Lunt, D. J., Valdes, P. J. & Hill, D. J. A new global biome reconstruction and data-model comparison for the Middle Pliocene. Glob. Ecol. Biogeogr. 17, 432–447 (2008).

  15. 15.

    Sniderman, J. M. K. et al. Pliocene reversal of Late Neogene aridification. Proc. Natl Acad. Sci. USA 113, 1999–2004 (2016).

  16. 16.

    Amidon, W. H. et al. Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods. Proc. Natl Acad. Sci. USA 114, 6474–6479 (2017).

  17. 17.

    Fauquette, S. et al. Climate and biomes in the West Mediterranean area during the Pliocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 152, 15–36 (1999).

  18. 18.

    Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. USA 114, 12888–12893 (2017).

  19. 19.

    Scheff, J. Drought indices, drought impacts, CO2, and warming: a historical and geologic perspective. Curr. Clim. Change Rep. 4, 202–209 (2018).

  20. 20.

    IPCC Global Warming of 1.5°C (Cambridge Univ. Press, 2018).

  21. 21.

    Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2009).

  22. 22.

    Rohling, E. J. et al. Making sense of palaeoclimate sensitivity. Nature 491, 683–691 (2012).

  23. 23.

    Fischer, H. et al. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nat. Geosci. 11, 474–485 (2018).

  24. 24.

    Li, C., von Storch, J. S. & Marotzke, J. Deep-ocean heat uptake and equilibrium climate response. Clim. Dynam. 40, 1071–1086 (2013).

  25. 25.

    Frölicher, T. L. & Paynter, D. J. Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales. Environ. Res. Lett. 10, 075002 (2015).

  26. 26.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

  27. 27.

    Gillett, N. P., Arora, V. K., Zickfeld, K., Marshall, S. J. & Merryfield, W. J. Ongoing climate change following a complete cessation of carbon dioxide emissions. Nat. Geosci. 4, 83–87 (2011).

  28. 28.

    Kushner, P. J., Held, I. M. & Delworth, T. L. Southern Hemisphere atmospheric circulation response to global warming. J. Clim. 14, 2238–2249 (2001).

  29. 29.

    Cai, W. J., Whetton, P. H. & Karoly, D. J. The response of the Antarctic Oscillation to increasing and stabilized atmospheric CO2. J. Clim. 16, 1525–1538 (2003).

  30. 30.

    Seo, K.-H., Frierson, D. M. W. & Son, J.-H. A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophys. Res. Lett. 41, 5251–5258 (2014).

  31. 31.

    Xie, S.-P. et al. Global warming pattern formation: sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).

  32. 32.

    Long, S.-M., Xie, S.-P., Zheng, X.-T. & Liu, Q. Fast and slow responses to global warming: sea surface temperature and precipitation patterns. J. Clim. 27, 285–299 (2014).

  33. 33.

    Solomon, S., Plattner, G.-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).

  34. 34.

    Cleveland, W. S. & Devlin, S. J. Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988).

  35. 35.

    Adam, O., Schneider, T. & Harnik, N. Role of changes in mean temperatures versus temperature gradients in the recent widening of the Hadley circulation. J. Clim. 27, 7450–7461 (2014).

  36. 36.

    D’Agostino, R., Lionello, P., Adam, O. & Schneider, T. Factors controlling Hadley circulation changes from the Last Glacial Maximum to the end of the 21st century. Geophys. Res. Lett. 44, 8585–8591 (2017).

  37. 37.

    Scheff, J. & Frierson, D. Robust future precipitation declines in the CMIP5 largely reflect the poleward expansion of model subtropical dry zones.Geophys. Res. Lett. 39, L18704 (2012).

  38. 38.

    Hendon, H. H., Lim, E.-P. & Nguyen, H. Seasonal variations of subtropical precipitation associated with the Southern Annular Mode. J. Clim. 27, 3446–3460 (2014).

  39. 39.

    Gillett, N. P. & Fyfe, J. C. Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett. 40, 1189–1193 (2013).

  40. 40.

    Lim, E.-P. et al. The impact of the Southern Annular Mode on future changes in Southern Hemisphere rainfall. Geophys. Res. Lett. 43, 7160–7167 (2016).

  41. 41.

    Lucas, C., Timbal, B. & Nguyen, H. The expanding tropics: a critical assessment of the observational and modeling studies. Wiley Interdiscip. Rev. Clim. Change 5, 89–112 (2014).

  42. 42.

    Gong, D. & Wang, S. Definition of Antarctic Oscillation index. Geophys. Res. Lett. 26, 459–462 (1999).

  43. 43.

    Solomon, A., Polvani, L. M., Waugh, D. W. & Davis, S. M. Contrasting upper and lower atmospheric metrics of tropical expansion in the Southern Hemisphere. Geophys. Res. Lett. 43, 10496–10503 (2016).

  44. 44.

    Kang, S. M., Polvani, L. M., Fyfe, J. C. & Sigmond, M. Impact of polar Ozone depletion on subtropical precipitation. Science 332, 951–954 (2011).

  45. 45.

    Arblaster, J. M. & Meehl, G. A. Contributions of external forcings to Southern Annular Mode trends. J. Clim. 19, 2896–2905 (2006).

  46. 46.

    Arblaster, J. M., Meehl, G. A. & Karoly, D. J. Future climate change in the Southern Hemisphere: competing effects of ozone and greenhouse gases. Geophys. Res. Lett. 38, L02701 (2011).

Download references


We thank P. Hope, L. Ashcroft, B. Timbal and R. Colman for comments on versions of the manuscript, and P. Whetton for discussions about this study. This research programme was supported by Australian Research Council grants DP0985214 and FL160100028 (to J.D.W.), DP130101829 (to J.D.W. and R.N.D.), DE120102530 (to J.M.K.S.), FT130100801 (to J.H.) and DE180100638 (to A.D.K.). We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP5, and we thank the climate modelling groups (listed in Supplementary Table 1) for producing and making available their model output. For CMIP5, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led the development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

J.M.K.S., J.R.B., J.D.W., J.H. and R.N.D. conceived of the project. J.R.B., J.M.K.S., J.D.W., K.L., M.M., N.P.G., K.B.T. and A.D.K. analysed and interpreted the climate model data. J.M.K.S., J.R.B. and J.D.W. wrote the paper, with contributions from the other authors.

Competing interests

The authors declare no competing interests.

Correspondence to J. M. Kale Sniderman or Jon D. Woodhead.

Supplementary information

Supplementary information

Supplementary Figures 1–16, Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Future precipitation projections.
Fig. 2: ECP 8.5 precipitation trends.
Fig. 3: Relationship between the Southern Hemisphere MTG and Southern Hemisphere subtropical precipitation.