Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Organic matter from Arctic sea-ice loss alters bacterial community structure and function


Continuing losses of multi-year sea ice (MYI) across the Arctic are causing first-year sea ice (FYI) to dominate the Arctic ice pack. Melting FYI provides a strong seasonal pulse of dissolved organic matter (DOM) into surface waters; however, the biological impact of this DOM input is unknown. Here we show that DOM additions cause important and contrasting changes in under-ice bacterioplankton abundance, production and species composition. Utilization of DOM was influenced by molecular size, with 10–100 kDa and >100 kDa DOM fractions promoting rapid growth of particular taxa, while uptake of sulfur and nitrogen-rich low molecular weight organic compounds shifted bacterial community composition. These results demonstrate the ecological impacts of DOM released from melting FYI, with wide-ranging consequences for the cycling of organic matter across regions of the Arctic Ocean transitioning from multi-year to seasonal sea ice as the climate continues to warm.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Changes in concentrations of dissolved organic and inorganic components during experiments of Arctic under-ice surface water enriched with three sea-ice-derived organic matter fractions (DOM, LMW and HMW).
Fig. 2: Changes in bacterial cell density and productivity over 9 days (216 h) in Arctic under-ice surface water enriched with three sea-ice-derived organic matter fractions (DOM, LMW and HMW).
Fig. 3: Element ratio (van Krevelen) plots of molecular formulas determined by FT-ICR-MS in control and three organic matter enriched treatments over a 216-h incubation.
Fig. 4: Changes in bacterioplankton taxonomic richness and diversity between under-ice seawater (T0water) and with addition of three sea-ice-derived organic carbon fractions (DOMtot, HMW, LMW) after 216 h incubation.

Data availability

Experimental and FT-ICR-MS data ( are available from the University of Essex data repository. Sequence data are archived at the European Bioinformatics institute,, under accession number PRJEB20754.


  1. 1.

    Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Stroeve, J. C., Markus, T., Boisvert, L., Miller, J. & Barrett, A. Changes in Arctic melt season and implications for sea ice loss. Geophys. Res. Lett. 41, 1216–1225 (2014).

    Article  Google Scholar 

  3. 3.

    Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E. & Jahn, A. Influence of internal variability on Arctic sea-ice trends. Nat. Clim. Change 5, 86–89 (2015).

    Article  Google Scholar 

  4. 4.

    Perovich, D. K. et al. Arctic Report Card 2015 (NOAA, 2015);

  5. 5.

    Clark, G. F. et al. Light driven tipping points in polar ecosystems. Glob. Change Biol. 19, 3749–3761 (2013).

    Article  Google Scholar 

  6. 6.

    Vancoppenolle, M. et al. Role of sea ice in global biogeochemical cycles: emerging views and challenges. Quat. Sci. Rev. 79, 207–230 (2013).

    Article  Google Scholar 

  7. 7.

    Krembs, C. & Deming, J. W. in Psychrophiles: from Biodiversity to Biotechnology (eds Margesin, R. et al.) 247–264 (Springer, Berlin, 2008).

  8. 8.

    Krembs, C., Eicken, H. & Deming, J. W. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc. Natl Acad. Sci. USA 108, 3653–3658 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    Underwood, G. J. C. et al. Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice. Proc. Natl Acad. Sci. USA 110, 15734–15739 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Aslam, S. N., Michel, C., Niemi, A. & Underwood, G. J. C. Patterns and drivers of carbohydrate budgets in ice algal assemblages from first year Arctic sea ice. Limnol. Oceanogr. 61, 919–937 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Leu, E. et al. Arctic spring awakening – steering principles behind the phenology of vernal ice algal blooms. Prog. Oceanogr. 139, 151–170 (2015).

    Article  Google Scholar 

  12. 12.

    Arctic Monitoring and Assessment Programme Snow, Water, Ice and Permafrost Summary for Policy-Makers (AMAP , Oslo, 2017).

  13. 13.

    Bowman, J. S. et al. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. ISME. J. 6, 11–20 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    Hatam, I., Lange, B., Beckers, J., Haas, C. & Lanoil, B. Bacterial communities from Arctic seasonal sea ice are more compositionally variable than those from multi-year sea ice. ISME J. 10, 2543–2552 (2016).

    Article  Google Scholar 

  15. 15.

    Verdugo, P. Marine microgels. Ann. Rev. Mar. Sci. 4, 375–400 (2012).

    Article  Google Scholar 

  16. 16.

    Benner, R. & Amon, R. M. W. The size-reactivity continuum of major bioelements in the ocean. Annu. Rev. Mar. Sci. 7, 185–205 (2015).

    Article  Google Scholar 

  17. 17.

    Amon, R. M. W., Fitznar, H. P. & Benner, R. Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol. Oceanogr. 46, 287–297 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    Riedel, A., Michel, C. & Gosselin, M. Seasonal study of sea-ice exopolymeric substances on the Mackenzie shelf: implications for transport of sea-ice bacteria and algae. Aquat. Microb. Ecol. 45, 195–206 (2006).

    Article  Google Scholar 

  19. 19.

    Juhl, A. R., Krembs, C. & Meiners, K. M. Seasonal development and differential retention of ice algae and other organic fractions in first-year Arctic sea ice. Mar. Ecol. Prog. Ser. 436, 1–16 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    Smith, R. E. H., Gosselin, M., Kudoh, S., Robineau, B. & Taguchie, S. DOC and its relationship to algae in bottom ice communities. J. Mar. Syst. 11, 71–80 (1997).

    Article  Google Scholar 

  21. 21.

    Michel, C., Riedel, A. & Mundy, C. J. Biological Investigation of First-Year Sea Ice Near Resolute Bay, Nunavut, Spring to Early Summer 2001. Canadian Data Report of Hydrography and Ocean Sciences 160 (Government of Canada, 2003).

  22. 22.

    Riedel, A., Michel, C. & Gosselin, M. Grazing of large-sized bacteria by sea-ice heterotrophic protists onthe Mackenzie shelf during the winter–spring transition. Aquat. Microbiol. Ecol. 50, 25–38 (2017).

    Article  Google Scholar 

  23. 23.

    Meiners, K., Brinkmeyer, R., Granskog, M. A. & Lindfors, A. Abundance, size distribution and bacterial colonization of exopolymer particles in Antarctic sea ice (Bellingshausen Sea). Aquat. Microb. Ecol. 35, 283–296 (2004).

    Article  Google Scholar 

  24. 24.

    Niemi, A., Meisterhans, G. & Michel, C. Response of under-ice prokaryotes to experimental sea-ice DOM enrichment. Aquat. Microb. Ecol. 73, 17–28 (2014).

    Article  Google Scholar 

  25. 25.

    Assmy, P. et al. Floating ice-algal aggregates below melting Arctic sea ice. PLoS ONE 8, e76599 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Wilson, T. W. et al. A marine biogenic source of atmospheric ice-nucleating particles. Nature 525, 234–238 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Holding, J. M. et al. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords. Limnol. Oceanogr. 62, 1307–1323 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Jørgensen, L., Stedmon, C. A., Kaartokallio, H., Middelboe, M. & Thomas, D. N. Changes in the composition and bioavailability of dissolved organic matter during sea ice formation. Limnol. Oceanogr. 60, 817–830 (2015).

    Article  Google Scholar 

  29. 29.

    Galindo, V. Biological and physical processes influencing sea ice, under-ice algae, and dimethylsulfoniopropionate during spring in the Canadian Arctic Archipelago. J. Geophys. Res. Oceans 119, 3746–3766 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Meiners, K. M. & Michel, C. in Sea Ice 3rd edn (ed. Thomas, D. N.) 415–432 (Wiley Blackwell, Oxford, 2017).

  31. 31.

    Aslam, S. N., Strauss, J., Thomas, D. N., Mock, T. & Underwood, G. J. C. Identifying metabolic pathways for production of extracellular polymeric substances (EPS) by the diatom Fragilariopsis cylindrus inhabiting sea ice. ISME J. 12, 1237–1251 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    Sleighter, R. L. & Hatcher, P. G. The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. J. Mass Spectrom. 42, 559–574 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    Shen, Y., Fichot, C. G. & Benner, R. Dissolved organic matter composition and bioavailability reflect ecosystem productivity in the Western Arctic Ocean. Biogeosciences 9, 4993–5005 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Michel, C., Ingram, R. G. & Harris, L. R. Variability in oceanographic and ecological processes in the Canadian Arctic Archipelago. Prog. Oceanogr. 71, 379–401 (2006).

    Article  Google Scholar 

  35. 35.

    Niemi, A., Michel, C., Hille, K. & Poulin, M. Protist assemblages in winter sea ice: setting the stage for the spring ice algal bloom. Polar Biol. 34, 1803–1817 (2011).

    Article  Google Scholar 

  36. 36.

    Chin, W., Orellana, M. V. & Verdugo, P. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391, 568–572 (1998).

    CAS  Article  Google Scholar 

  37. 37.

    Mundy, C. J. et al. Role of environmental factors on phytoplankton bloom initiation under landfast sea ice in Resolute Passage, Canada. Mar. Ecol. Prog. Ser. 497, 38–49 (2014).

    Article  Google Scholar 

  38. 38.

    Elliott, A. et al. Spring production of mycosporine-like amino acids and other UV-absorbing compounds in sea ice-associated algae communities in the Canadian Arctic. Mar. Ecol. Prog. Ser. 541, 91–104 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Arnosti, C. & Steen, A. Patterns of extracellular enzyme activities and microbial metabolism in an Arctic fjord of Svalbard and in the northern Gulf of Mexico: contrasts in carbon processing by pelagic microbial communities. Front. Microbiol. 4, 1 (2013).

    Article  Google Scholar 

  40. 40.

    Steen, A. D. & Arnosti, C. Picky, hungry eaters in the cold: persistent substrate selectivity among polar pelagic microbial communities. Front. Microbiol. 5, 527 (2014).

    Article  Google Scholar 

  41. 41.

    Teeling, H. et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife 5, e11888 (2016).

    Article  Google Scholar 

  42. 42.

    Sipler, R. E. et al. Microbial community response to terrestrially derived dissolved organic matter in the coastal Arctic. Front. Microbiol. 8, 1018 (2017).

    Article  Google Scholar 

  43. 43.

    Ortega-Retuerta, E. et al. Carbon fluxes in the Canadian Arctic: patterns and drivers of bacterial abundance, production and respiration on the Beaufort Sea margin. Biogeosciences 9, 3679–3692 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    Kirchman, D. L. et al. Standing stocks, production, and respiration of phytoplankton and heterotrophic bacteria in the western Arctic Ocean. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 56, 1237–1248 (2009).

    CAS  Article  Google Scholar 

  45. 45.

    Arnosti, C. Microbial extracellular enzymes in the marine carbon cycle. Annu. Rev. Mar. Sci. 3, 401–425 (2011).

    Article  Google Scholar 

  46. 46.

    Troussellier, M., Bouvy, M., Courties, C. & Dupuy, C. Variation of carbon content among bacterial species under starvation conditions. Aquat. Microb. Ecol. 13, 113–119 (1997).

    Article  Google Scholar 

  47. 47.

    Hansell, D. A. & Carlson, C. A. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22, 202–211 (2009).

    Article  Google Scholar 

  48. 48.

    Ksionzek, K. B. et al. Dissolved organic sulfur in the ocean: biogeochemistry of a petagram inventory. Science 354, 456–459 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Yergeau, E. et al. Metagenomic survey of the taxonomic and functional microbial communities of seawater and sea ice from the Canadian Arctic. Sci. Rep. 7, 42242 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Zeng, Y. et al. Phylogenetic diversity of planktonic bacteria in the Chukchi Borderland region in summer. Acta Oceanologica Sininica 32, 66–74 (2013).

    CAS  Article  Google Scholar 

  51. 51.

    Pedrós-Alió, C., Potvin, M. & Lovejoy, C. Diversity of planktonic microorganisms in the Arctic Ocean. Prog. Oceanogr. 139, 233–243 (2015).

    Article  Google Scholar 

  52. 52.

    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2015).

    Article  Google Scholar 

  53. 53.

    Herlemann, D. P. R. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).

    CAS  Article  Google Scholar 

  54. 54.

    Deming, J. W. & Collins, R. E. in Sea Ic e 3rd edn (ed. Thomas, D. N.) 326–351 (Wiley, Oxford, 2017).

  55. 55.

    Methé, B. A. et al. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl Acad. Sci. USA 102, 10913–10918 (2005).

    Article  Google Scholar 

  56. 56.

    Bohórquez, J. et al. Different types of diatom-derived extracellular polymeric substances drive changes in heterotrophic bacterial communities from intertidal sediments. Front. Microbiol. 8, 245 (2017).

    Article  Google Scholar 

  57. 57.

    Frette, L., Jørgensen, N. O., Irming, H. & Kroer, N. Tenacibaculum skagerrakense sp. nov., a marine bacterium isolated from the pelagic zone in Skagerrak, Denmark. Int. J. Syst. Evol. Microbiol. 54, 519–524 (2004).

    CAS  Article  Google Scholar 

  58. 58.

    Groudieva, T., Grote, R. & Antranikian, G. Psychromonas arctica sp. nov., a novel psychrotolerant, biofilm-forming bacterium isolated from Spitzbergen. Int. J. Syst. Evol. Microbiol. 53, 539–545 (2003).

    CAS  Article  Google Scholar 

  59. 59.

    Lange, B. A. et al. Comparing springtime ice-algal chlorophyll a and physical properties of multi-year and first-year sea ice from the Lincoln Sea. PLoS ONE 10, e0122418 (2015).

    Article  Google Scholar 

  60. 60.

    Thingstad, T. F., Våge, S., Storesund, J. E., Sandaa, R.-A. & Giske, J. A theoretical analysis of how strain-specific viruses can control microbial species diversity. Proc. Natl Acad. Sci. USA 111, 7813–7818 (2014).

    CAS  Article  Google Scholar 

  61. 61.

    Logvinova, C. L., Frey, K. E., Mann, P. J., Stubbins, A. & Spencer, R. G. M. Assessing the potential impacts of declining Arctic sea ice cover on the photochemical degradation of dissolved organic matter in the Chukchi and Beaufort Seas. J. Geophys. Res. Biogeosci. 120, 2326–2344 (2015).

    CAS  Article  Google Scholar 

  62. 62.

    Horvat, C. et al. The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean. Sci. Adv. 3, e1601191 (2017).

    Article  Google Scholar 

  63. 63.

    Anderson, L. G., & Amon, R. M. W. in Biogeochemistry of Marine Dissolved Organic Matter 2nd edn (eds Hansell, D. A. & Carlson, C. A.) 609–633 (Academic Press, Boston, 2015).

  64. 64.

    Elliot, S. et al. Strategies for the simulation of sea ice organic chemistry: Arctic tests and development. Geosciences 7, 52 (2017).

    Article  Google Scholar 

  65. 65.

    Zhou, J., Mopper, K. & Passow, U. The role of surface active carbohydrates in the formation of transparent exopolymer particles by bubble adsorption of seawater. Limnol. Oceanogr. 43, 1860–1871 (1998).

    CAS  Article  Google Scholar 

  66. 66.

    Underwood, G. J. C., Fietz, S., Papadimitriou, S., Thomas, D. N. & Dieckmann, G. S. Distribution and composition of dissolved extracellular polymeric substances (EPS) in Antarctic Sea Ice. Mar. Ecol. Prog. Ser. 404, 1–19 (2010).

    CAS  Article  Google Scholar 

  67. 67.

    Norman, L. et al. The role of bacterial and algal exopolymeric substances in iron chemistry. Mar. Chem. 186, 148–161 (2015).

    Article  Google Scholar 

  68. 68.

    Grasshoff, K., Kremling, K. & Ehrhardt, M. (eds) Methods of Seawater Analysis 3rd edn (Wiley, 1999).

  69. 69.

    Knap, A., Michaels, A., Close, A., Ducklow, H. & Dickson, A. Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements, JGOFS Report No. 19, Reprint of the IOC Manuals and Guides No. 29, UNESCO 1994 (JGOFS, 1996).

  70. 70.

    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).

    CAS  Article  Google Scholar 

  71. 71.

    Decho, A. W. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. Annu. Rev. 28, 73–153 (1990).

    Google Scholar 

  72. 72.

    Herborg, L.-M., Thomas, D. N., Kennedy, H., Haas, C. & Dieckmann, C. Dissolved carbohydrates in Antarctic sea ice. Antarct. Sci. 13, 119–125 (2001).

    Article  Google Scholar 

  73. 73.

    Sutherland, I. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147, 3–9 (2001).

    CAS  Article  Google Scholar 

  74. 74.

    Dittmar, T., Koch, B. P., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 6, 230–235 (2008).

    CAS  Article  Google Scholar 

  75. 75.

    Koch, B. P., Kattner, G., Witt, M. & Passow, U. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile? Biogeosciences 11, 4173–4190 (2014).

    CAS  Article  Google Scholar 

  76. 76.

    Lechtenfeld, O. J. et al. The influence of salinity on the molecular and optical properties of surface microlayers in a karstic estuary. Mar. Chem. 150, 25–38 (2013).

    CAS  Article  Google Scholar 

  77. 77.

    Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Env. Microbiol. 63, 186–193 (1997).

    CAS  Google Scholar 

  78. 78.

    Gasol, J. M., Zweifel, U. L., Peters, F., Fuhrman, J. A. & Hagström, Å. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl. Environ. Microbiol. 65, 4475–4483 (1999).

    CAS  Google Scholar 

  79. 79.

    Cosa, G., Focsaneanu, K. S., McLean, J. R. N., McNamee, J. P. & Scaiano, J. C. Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution. Photochem. Photobiol. 73, 585–599 (2001).

    CAS  Article  Google Scholar 

  80. 80.

    Smith, D. C. & Azam, F. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar. Microb. Food Webs 6, 107–114 (1992).

    Google Scholar 

  81. 81.

    Herndl, G. J. et al. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl. Environ. Microbiol. 71, 2303–2309 (2005).

    CAS  Article  Google Scholar 

  82. 82.

    Garneau, M.-E. et al. Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada). FEMS Microbiol. Ecol. 92, fiw130 (2016).

    Article  Google Scholar 

  83. 83.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  Article  Google Scholar 

  84. 84.

    Quince, C., Lanzen, A., Davenport, R. J. & Turnbaugh, P. J. Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12, 38 (2011).

    Article  Google Scholar 

  85. 85.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS  Article  Google Scholar 

  86. 86.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS  Article  Google Scholar 

  87. 87.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    Article  Google Scholar 

  88. 88.

    Bray, J. C. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).

    Article  Google Scholar 

Download references


G.J.C.U. was funded by grants no. NE/D00681/1 and no. NE/E016251/1 from the UK Natural Environment Research Council. C.M. received financial support from the Natural Sciences and Engineering Council of Canada (Individual Discovery Grant), the International Governance Strategy (Fisheries and Oceans Canada) and the Polar Continental Shelf Program (Natural Resources Canada) for the project Sea Ice BIOTA (Biological Impacts of Trends in the Arctic). G.M. received a Visiting Fellowship in Canadian Government Laboratory from the Natural Sciences and Engineering Council of Canada. C. Burau is acknowledged for performing solid-phase extraction. We thank S. Duerksen, D. Jordan, M. Poulin and A. Reppchen for their help in the field and laboratory. We also appreciate support from the Resolute Bay Hunters and Trappers Association and the logistical support from the Polar Continental Shelf Program in Resolute, Nunavut.

Author information




G.J.C.U., C.M. and A.N. designed the study. G.J.C.U., C.M. and G.M. conducted the experiments. M.W. carried out FT-ICR-MS analysis. G.J.C.U., C.M., C.B., G.M., A.N., B.P.K. and A.J.D. analysed the data. G.J.C.U., C.M., B.P.K. and A.J.D. wrote the manuscript.

Corresponding author

Correspondence to Graham J. C. Underwood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Climate Change thanks David Kirchman and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–15, Supplementary Tables 1–4, Supplementary Methods, Supplementary Note, Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Underwood, G.J.C., Michel, C., Meisterhans, G. et al. Organic matter from Arctic sea-ice loss alters bacterial community structure and function. Nature Clim Change 9, 170–176 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing