Abstract

Excluding the large ice sheets of Greenland and Antarctica, glaciers in South America are large contributors to sea-level rise1. Their rates of mass loss, however, are poorly known. Here, using repeat bi-static synthetic aperture radar interferometry over the years 2000 to 2011/2015, we compute continent-wide, glacier-specific elevation and mass changes for 85% of the glacierized area of South America. Mass loss rate is calculated to be 19.43 ± 0.60 Gt a−1 from elevation changes above ground, sea or lake level, with an additional 3.06 ± 1.24 Gt a−1 from subaqueous ice mass loss not contributing to sea-level rise. The largest contributions come from the Patagonian icefields, where 83% mass loss occurs, largely from dynamic adjustments of large glaciers. These changes contribute 0.054 ± 0.002 mm a−1 to sea-level rise. In comparison with previous studies2, tropical and out-tropical glaciers — as well as those in Tierra del Fuego — show considerably less ice loss. These results provide basic information to calibrate and validate glacier-climate models and also for decision-makers in water resource management3.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Elevation change fields are available via the World Data Center PANGAEA operated by AWI Bremerhaven under https://doi.org/10.1594/PANGAEA.893612. Glacier-specific results can be generated from those fields, but will also be made available through submission to the World Glacier Monitoring Service.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Marzeion, B., Kaser, G., Maussion, F. & Champollion, N. Limited influence of climate change mitigation on short-term glacier mass loss. Nat. Clim. Change 8, 305–308 (2018).

  2. 2.

    Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

  3. 3.

    Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

  4. 4.

    Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13, 063008 (2018).

  5. 5.

    Garreaud, R. D. et al. The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 21, 6307–6327 (2017).

  6. 6.

    Mark, B. G. et al. Glacier loss and hydro-social risks in the Peruvian Andes. Glob. Planet. Change 159, 61–76 (2017).

  7. 7.

    Jacob, T., Wahr, J., Pfeffer, W. T. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012).

  8. 8.

    Mernild, S. H. et al. Mass loss and imbalance of glaciers along the Andes Cordillera to the sub-Antarctic islands. Glob. Planet. Change 133, 109–119 (2015).

  9. 9.

    Rabatel, A. et al. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7, 81–102 (2013).

  10. 10.

    Dietrich, R. et al. Rapid crustal uplift in Patagonia due to enhanced ice loss. Earth. Planet. Sci. Lett. 289, 22–29 (2010).

  11. 11.

    Foresta, L. et al. Heterogeneous and rapid ice loss over the Patagonian Ice Fields revealed by CryoSat-2 swath radar altimetry. Remote Sens. Environ. 211, 441–455 (2018).

  12. 12.

    Farr, T. G. et al. The Shuttle Radar Topography Mission. Rev. Geophys. 45, RG2004 (2007).

  13. 13.

    Krieger, G. et al. TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE. Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).

  14. 14.

    Malz, P. et al. Elevation and mass changes of the Southern Patagonia icefield derived from TanDEM-X and SRTM data. Remote Sens. 10, 188 (2018).

  15. 15.

    Warren, C., Benn, D., Winchester, V. & Harrison, S. Buoyancy-driven lacustrine calving, Glaciar Nef, Chilean Patagonia. J. Glaciol. 47, 135–146 (2001).

  16. 16.

    Gourlet, P., Rignot, E., Rivera, A. & Casassa, G. Ice thickness of the northern half of the Patagonia Icefields of South America from high-resolution airborne gravity surveys: ICE THICKNESS PATAGONIA. Geophys. Res. Lett. 43, 241–249 (2016).

  17. 17.

    Carrivick, J. L., Davies, B. J., James, W. H. M., Quincey, D. J. & Glasser, N. F. Distributed ice thickness and glacier volume in southern South America. Glob. Planet. Change 146, 122–132 (2016).

  18. 18.

    Meier, W. J.-H., Grießinger, J., Hochreuther, P. & Braun, M. H. An updated multi-temporal glacier inventory for the Patagonian Andes with changes between the Little Ice Age and 2016. Front. Earth Sci. https://doi.org/10.3389/feart.2018.00062 (2018).

  19. 19.

    Basantes-Serrano, R. et al. Slight mass loss revealed by reanalyzing glacier mass-balance observations on Glaciar Antisana 15α (inner tropics) during the 1995–2012 period. J. Glaciol. 62, 124–136 (2016).

  20. 20.

    Abdel Jaber, W. Derivation of Mass Balance and Surface Velocity of Glaciers by Means of High Resolution Synthetic Aperture Radar: Application to the Patagonian Icefields and Antarctica. PhD thesis, TU Munich (2016).

  21. 21.

    Willis, M. J., Melkonian, A. K., Pritchard, M. E. & Ramage, J. M. Ice loss rates at the Northern Patagonian Icefield derived using a decade of satellite remote sensing. Remote Sens. Environ. 117, 184–198 (2012).

  22. 22.

    Willis, M. J., Melkonian, A. K., Pritchard, M. E. & Rivera, A. Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophys. Res. Lett. 39, L17501 (2012).

  23. 23.

    Dussaillant, I., Berthier, E. & Brun, F. Geodetic mass balance of the Northern Patagonian Icefield from 2000 to 2012 using two independent methods. Front. Earth Sci. https://doi.org/10.3389/feart.2018.00008 (2018).

  24. 24.

    Melkonian, A. K. et al. Satellite-derived volume loss rates and glacier speeds for the Cordillera Darwin Icefield, Chile. Cryosphere 7, 823–839 (2013).

  25. 25.

    Ivins, E. R. et al. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009. J. Geophys. Res. Solid Earth. 116, B02403 (2011).

  26. 26.

    Vuille, M. et al. Rapid decline of snow and ice in the tropical Andes – Impacts, uncertainties and challenges ahead. Earth Sci. Rev. 176, 195–213 (2018).

  27. 27.

    Vuille, M. et al. Climate change and tropical Andean glaciers: Past, present and future. Earth Sci. Rev. 89, 79–96 (2008).

  28. 28.

    Sakakibara, D. & Sugiyama, S. Ice-front variations and speed changes of calving glaciers in the Southern Patagonia Icefield from 1984 to 2011. J. Geophys. Res. F Earth Surf. 119, 2541–2554 (2014).

  29. 29.

    Fürst, J. J. et al. Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard. Cryosphere 11, 2003–2032 (2017).

  30. 30.

    Soruco, A. et al. Contribution of glacier runoff to water resources of La Paz city, Bolivia (16° S). Ann. Glaciol. 56, 147–154 (2015).

  31. 31.

    Sagredo, E. A. & Lowell, T. V. Climatology of Andean glaciers: a framework to understand glacier response to climate change. Glob. Planet. Change 86–87, 101–109 (2012).

  32. 32.

    Veettil, B. K. et al. Glacier monitoring and glacier-climate interactions in the tropical Andes: a review. J. South Am. Earth Sci. 77, 218–246 (2017).

  33. 33.

    Barcaza, G. et al. Glacier inventory and recent glacier variations in the Andes of Chile, South America. Ann. Glaciol. 58, 166–180 (2017).

  34. 34.

    Kaser, G. Glacier-climate interaction at low latitudes. J. Glac. 47, 195–204 (2001).

  35. 35.

    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth. Syst. Sci. 11, 1633–1644 (2007).

  36. 36.

    Podest, E. & Crow, W. Ancillary Data Report Digital Elevation Model v.1 SMAP Science Document no. 043 (NASA/JPL, accessed 11 September 2018); https://smap.jpl.nasa.gov/system/internal_resources/details/original/285_043_dig_elev_mod.pdf

  37. 37.

    Zink, M., Bartusch, M. & Miller, D. TanDEM-X mission status. In IEEE International Geoscience and Remote Sensing Symposium 2290–2293 (IEEE, 2011).

  38. 38.

    Arendt, A. et al. Randolph Glacier Inventory: A Dataset of Global Glacier Outlines: Version 6.0: Technical Report (Global Land Ice Measurements from Space, Digital Media, 2017).

  39. 39.

    Nuth, C. & Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 5, 271–290 (2011).

  40. 40.

    Toutin, T. Three-dimensional topographic mapping with ASTER stereo data in rugged topography. IEEE. Trans. Geosci. Remote Sens. 40, 2241–2247 (2002).

  41. 41.

    Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668 (2017).

  42. 42.

    Cogley, J. G. et al. Glossary of Glacier Mass Balance and Related Terms (UNESCO-IHP, Paris, 2011).

  43. 43.

    Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 7, 877–887 (2013).

  44. 44.

    Rolstad, C., Haug, T. & Denby, B. Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway. J. Glaciol. 55, 666–680 (2009).

  45. 45.

    Gardelle, J., Berthier, E., Arnaud, Y. & Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7, 1263–1286 (2013).

  46. 46.

    Vijay, S. & Braun, M. Elevation change rates of glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013. Remote Sens. 8, 1038 (2016).

  47. 47.

    Paul, F. et al. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 54, 171–182 (2013).

Download references

Acknowledgements

This study was financially supported with the grant BR2105/14-1 within the DFG Priority Program 'Regional Sea Level Change and Society’ and by grant SA2339/3-1, the BMBF-CONICYT project GABY-VASA (01DN15020, BMBF20140052), the DLR/BMWi grant GEKKO (50EE1544) as well as the HGF Alliance Remote Sensing & Earth System Dynamics and FONDECYT 1161130. D.F.B. was funded under a BECAS-Chile scholarship.

Author information

Affiliations

  1. Institut für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

    • Matthias H. Braun
    • , Philipp Malz
    • , Christian Sommer
    • , David Farías-Barahona
    • , Tobias Sauter
    •  & Thorsten C. Seehaus
  2. Centro de Investigación Gaia Antártica, Universidad de Magallanes, Punta Arenas, Chile

    • Gino Casassa
  3. Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile

    • Gino Casassa
  4. Instituto de Investigaciones Geológicas y del Medio Ambiente, Universidad Mayor de San Andrés, La Paz, Bolivia

    • Alvaro Soruco
  5. Glaciarium, Centro de Interpretación de Glaciares, El Calafate, Argentina

    • Pedro Skvarca

Authors

  1. Search for Matthias H. Braun in:

  2. Search for Philipp Malz in:

  3. Search for Christian Sommer in:

  4. Search for David Farías-Barahona in:

  5. Search for Tobias Sauter in:

  6. Search for Gino Casassa in:

  7. Search for Alvaro Soruco in:

  8. Search for Pedro Skvarca in:

  9. Search for Thorsten C. Seehaus in:

Contributions

M.H.B. initiated and led the study and wrote the manuscript, P.M., T.C.S. and C.S. wrote the analysis code; P.M. processed all data from the SPI, T.C.S. processed all data from Peru and Bolivia, C.S. processed the inner tropics, northern Chile and Patagonia outside SPI and NPI, computed the subaqueous mass loss and generated the graphs, D.F.B. processed the data for the central Andes, Lake District and NPI and compiled the supplemental data on glacier elevation and mass changes. T.S. provided the climate data analysis and interpretation of results; A.S., G.C. and P.S. contributed to the interpretation of the data. All authors revised the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Matthias H. Braun.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–9, Supplementary Tables 1–3, Supplementary References

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41558-018-0375-7