Constraining glacier elevation and mass changes in South America

Abstract

Excluding the large ice sheets of Greenland and Antarctica, glaciers in South America are large contributors to sea-level rise1. Their rates of mass loss, however, are poorly known. Here, using repeat bi-static synthetic aperture radar interferometry over the years 2000 to 2011/2015, we compute continent-wide, glacier-specific elevation and mass changes for 85% of the glacierized area of South America. Mass loss rate is calculated to be 19.43 ± 0.60 Gt a−1 from elevation changes above ground, sea or lake level, with an additional 3.06 ± 1.24 Gt a−1 from subaqueous ice mass loss not contributing to sea-level rise. The largest contributions come from the Patagonian icefields, where 83% mass loss occurs, largely from dynamic adjustments of large glaciers. These changes contribute 0.054 ± 0.002 mm a−1 to sea-level rise. In comparison with previous studies2, tropical and out-tropical glaciers — as well as those in Tierra del Fuego — show considerably less ice loss. These results provide basic information to calibrate and validate glacier-climate models and also for decision-makers in water resource management3.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Glacierized areas, TanDEM-X coverage and elevation change rates in different regions of South America.
Fig. 2: Glacier hypsometry and elevation change distribution versus altitude per region.
Fig. 3: Decadal trends of skin temperature and vertically integrated water vapour across South America.
Fig. 4: Glacier mass balance rates per area unit (specific mass balance) and absolute mass changes for the different regions.

Data availability

Elevation change fields are available via the World Data Center PANGAEA operated by AWI Bremerhaven under https://doi.org/10.1594/PANGAEA.893612. Glacier-specific results can be generated from those fields, but will also be made available through submission to the World Glacier Monitoring Service.

References

  1. 1.

    Marzeion, B., Kaser, G., Maussion, F. & Champollion, N. Limited influence of climate change mitigation on short-term glacier mass loss. Nat. Clim. Change 8, 305–308 (2018).

    Article  Google Scholar 

  2. 2.

    Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Article  Google Scholar 

  4. 4.

    Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13, 063008 (2018).

    Article  Google Scholar 

  5. 5.

    Garreaud, R. D. et al. The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 21, 6307–6327 (2017).

    Article  Google Scholar 

  6. 6.

    Mark, B. G. et al. Glacier loss and hydro-social risks in the Peruvian Andes. Glob. Planet. Change 159, 61–76 (2017).

    Article  Google Scholar 

  7. 7.

    Jacob, T., Wahr, J., Pfeffer, W. T. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Mernild, S. H. et al. Mass loss and imbalance of glaciers along the Andes Cordillera to the sub-Antarctic islands. Glob. Planet. Change 133, 109–119 (2015).

    Article  Google Scholar 

  9. 9.

    Rabatel, A. et al. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7, 81–102 (2013).

    Article  Google Scholar 

  10. 10.

    Dietrich, R. et al. Rapid crustal uplift in Patagonia due to enhanced ice loss. Earth. Planet. Sci. Lett. 289, 22–29 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Foresta, L. et al. Heterogeneous and rapid ice loss over the Patagonian Ice Fields revealed by CryoSat-2 swath radar altimetry. Remote Sens. Environ. 211, 441–455 (2018).

    Article  Google Scholar 

  12. 12.

    Farr, T. G. et al. The Shuttle Radar Topography Mission. Rev. Geophys. 45, RG2004 (2007).

    Article  Google Scholar 

  13. 13.

    Krieger, G. et al. TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE. Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).

    Article  Google Scholar 

  14. 14.

    Malz, P. et al. Elevation and mass changes of the Southern Patagonia icefield derived from TanDEM-X and SRTM data. Remote Sens. 10, 188 (2018).

    Article  Google Scholar 

  15. 15.

    Warren, C., Benn, D., Winchester, V. & Harrison, S. Buoyancy-driven lacustrine calving, Glaciar Nef, Chilean Patagonia. J. Glaciol. 47, 135–146 (2001).

    Article  Google Scholar 

  16. 16.

    Gourlet, P., Rignot, E., Rivera, A. & Casassa, G. Ice thickness of the northern half of the Patagonia Icefields of South America from high-resolution airborne gravity surveys: ICE THICKNESS PATAGONIA. Geophys. Res. Lett. 43, 241–249 (2016).

    Article  Google Scholar 

  17. 17.

    Carrivick, J. L., Davies, B. J., James, W. H. M., Quincey, D. J. & Glasser, N. F. Distributed ice thickness and glacier volume in southern South America. Glob. Planet. Change 146, 122–132 (2016).

    Article  Google Scholar 

  18. 18.

    Meier, W. J.-H., Grießinger, J., Hochreuther, P. & Braun, M. H. An updated multi-temporal glacier inventory for the Patagonian Andes with changes between the Little Ice Age and 2016. Front. Earth Sci. https://doi.org/10.3389/feart.2018.00062 (2018).

  19. 19.

    Basantes-Serrano, R. et al. Slight mass loss revealed by reanalyzing glacier mass-balance observations on Glaciar Antisana 15α (inner tropics) during the 1995–2012 period. J. Glaciol. 62, 124–136 (2016).

    Article  Google Scholar 

  20. 20.

    Abdel Jaber, W. Derivation of Mass Balance and Surface Velocity of Glaciers by Means of High Resolution Synthetic Aperture Radar: Application to the Patagonian Icefields and Antarctica. PhD thesis, TU Munich (2016).

  21. 21.

    Willis, M. J., Melkonian, A. K., Pritchard, M. E. & Ramage, J. M. Ice loss rates at the Northern Patagonian Icefield derived using a decade of satellite remote sensing. Remote Sens. Environ. 117, 184–198 (2012).

    Article  Google Scholar 

  22. 22.

    Willis, M. J., Melkonian, A. K., Pritchard, M. E. & Rivera, A. Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophys. Res. Lett. 39, L17501 (2012).

    Article  Google Scholar 

  23. 23.

    Dussaillant, I., Berthier, E. & Brun, F. Geodetic mass balance of the Northern Patagonian Icefield from 2000 to 2012 using two independent methods. Front. Earth Sci. https://doi.org/10.3389/feart.2018.00008 (2018).

  24. 24.

    Melkonian, A. K. et al. Satellite-derived volume loss rates and glacier speeds for the Cordillera Darwin Icefield, Chile. Cryosphere 7, 823–839 (2013).

    Article  Google Scholar 

  25. 25.

    Ivins, E. R. et al. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009. J. Geophys. Res. Solid Earth. 116, B02403 (2011).

    Article  Google Scholar 

  26. 26.

    Vuille, M. et al. Rapid decline of snow and ice in the tropical Andes – Impacts, uncertainties and challenges ahead. Earth Sci. Rev. 176, 195–213 (2018).

    Article  Google Scholar 

  27. 27.

    Vuille, M. et al. Climate change and tropical Andean glaciers: Past, present and future. Earth Sci. Rev. 89, 79–96 (2008).

    Article  Google Scholar 

  28. 28.

    Sakakibara, D. & Sugiyama, S. Ice-front variations and speed changes of calving glaciers in the Southern Patagonia Icefield from 1984 to 2011. J. Geophys. Res. F Earth Surf. 119, 2541–2554 (2014).

    Article  Google Scholar 

  29. 29.

    Fürst, J. J. et al. Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard. Cryosphere 11, 2003–2032 (2017).

    Article  Google Scholar 

  30. 30.

    Soruco, A. et al. Contribution of glacier runoff to water resources of La Paz city, Bolivia (16° S). Ann. Glaciol. 56, 147–154 (2015).

    Article  Google Scholar 

  31. 31.

    Sagredo, E. A. & Lowell, T. V. Climatology of Andean glaciers: a framework to understand glacier response to climate change. Glob. Planet. Change 86–87, 101–109 (2012).

    Article  Google Scholar 

  32. 32.

    Veettil, B. K. et al. Glacier monitoring and glacier-climate interactions in the tropical Andes: a review. J. South Am. Earth Sci. 77, 218–246 (2017).

    Article  Google Scholar 

  33. 33.

    Barcaza, G. et al. Glacier inventory and recent glacier variations in the Andes of Chile, South America. Ann. Glaciol. 58, 166–180 (2017).

    Article  Google Scholar 

  34. 34.

    Kaser, G. Glacier-climate interaction at low latitudes. J. Glac. 47, 195–204 (2001).

    Article  Google Scholar 

  35. 35.

    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth. Syst. Sci. 11, 1633–1644 (2007).

    Article  Google Scholar 

  36. 36.

    Podest, E. & Crow, W. Ancillary Data Report Digital Elevation Model v.1 SMAP Science Document no. 043 (NASA/JPL, accessed 11 September 2018); https://smap.jpl.nasa.gov/system/internal_resources/details/original/285_043_dig_elev_mod.pdf

  37. 37.

    Zink, M., Bartusch, M. & Miller, D. TanDEM-X mission status. In IEEE International Geoscience and Remote Sensing Symposium 2290–2293 (IEEE, 2011).

  38. 38.

    Arendt, A. et al. Randolph Glacier Inventory: A Dataset of Global Glacier Outlines: Version 6.0: Technical Report (Global Land Ice Measurements from Space, Digital Media, 2017).

  39. 39.

    Nuth, C. & Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 5, 271–290 (2011).

    Article  Google Scholar 

  40. 40.

    Toutin, T. Three-dimensional topographic mapping with ASTER stereo data in rugged topography. IEEE. Trans. Geosci. Remote Sens. 40, 2241–2247 (2002).

    Article  Google Scholar 

  41. 41.

    Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Cogley, J. G. et al. Glossary of Glacier Mass Balance and Related Terms (UNESCO-IHP, Paris, 2011).

  43. 43.

    Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 7, 877–887 (2013).

    Article  Google Scholar 

  44. 44.

    Rolstad, C., Haug, T. & Denby, B. Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway. J. Glaciol. 55, 666–680 (2009).

    Article  Google Scholar 

  45. 45.

    Gardelle, J., Berthier, E., Arnaud, Y. & Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7, 1263–1286 (2013).

    Article  Google Scholar 

  46. 46.

    Vijay, S. & Braun, M. Elevation change rates of glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013. Remote Sens. 8, 1038 (2016).

    Article  Google Scholar 

  47. 47.

    Paul, F. et al. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 54, 171–182 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported with the grant BR2105/14-1 within the DFG Priority Program 'Regional Sea Level Change and Society’ and by grant SA2339/3-1, the BMBF-CONICYT project GABY-VASA (01DN15020, BMBF20140052), the DLR/BMWi grant GEKKO (50EE1544) as well as the HGF Alliance Remote Sensing & Earth System Dynamics and FONDECYT 1161130. D.F.B. was funded under a BECAS-Chile scholarship.

Author information

Affiliations

Authors

Contributions

M.H.B. initiated and led the study and wrote the manuscript, P.M., T.C.S. and C.S. wrote the analysis code; P.M. processed all data from the SPI, T.C.S. processed all data from Peru and Bolivia, C.S. processed the inner tropics, northern Chile and Patagonia outside SPI and NPI, computed the subaqueous mass loss and generated the graphs, D.F.B. processed the data for the central Andes, Lake District and NPI and compiled the supplemental data on glacier elevation and mass changes. T.S. provided the climate data analysis and interpretation of results; A.S., G.C. and P.S. contributed to the interpretation of the data. All authors revised the manuscript.

Corresponding author

Correspondence to Matthias H. Braun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Tables 1–3, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Braun, M.H., Malz, P., Sommer, C. et al. Constraining glacier elevation and mass changes in South America. Nature Clim Change 9, 130–136 (2019). https://doi.org/10.1038/s41558-018-0375-7

Download citation

Further reading