Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target

Abstract

Agricultural methane and nitrous oxide emissions represent around 10–12% of total anthropogenic GHG emissions and have a key role to play in achieving a 1.5 °C (above pre-industrial) climate stabilization target. Using a multi-model assessment approach, we quantify the potential contribution of agriculture to the 1.5 °C target and decompose the mitigation potential by emission source, region and mitigation mechanism. The results show that the livestock sector will be vital to achieve emission reductions consistent with the 1.5 °C target mainly through emission-reducing technologies or structural changes. Agriculture may contribute emission reductions of 0.8–1.4 Gt of CO2-equivalent (CO2e) yr−1 at just US$20 per tCO2e in 2050. Combined with dietary changes, emission reductions can be increased to 1.7–1.8 GtCO2e yr−1. At carbon prices compatible with the 1.5 °C target, agriculture could even provide average emission savings of 3.9 GtCO2e yr−1 in 2050, which represents around 8% of current GHG emissions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Agricultural non-CO 2 baseline emissions across models.
Fig. 2: Decomposed agricultural non-CO2 mitigation potentials across models.
Fig. 3: Average agricultural non-CO2 mitigation potentials across models.
Fig. 4: Impact of diet shift and carbon price scenarios on emissions and calorie consumption.

Similar content being viewed by others

Data availability

Scenario data for all scenarios will be made accessible online via a repository at: http://data.europa.eu/89h/5a06cad1-6c12-4d17-b008-4b58956ec3d8.

References

  1. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  2. Global Anthropogenic Non-CO 2 Greenhouse Gas Emissions: 1990–2030 (EPA, 2012).

  3. Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21, 2655–2660 (2015).

    Article  Google Scholar 

  4. West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

    Article  CAS  Google Scholar 

  5. Smith, K. A. Changing views of nitrous oxide emissions from agricultural soil: key controlling processes and assessment at different spatial scales. Eur. J. Soil Sci. 68, 137–155 (2017).

    Article  CAS  Google Scholar 

  6. Tubiello, F. et al. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 8, 015009 (2013).

    Article  Google Scholar 

  7. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  8. Burney, J. A., Davis, S. J. & Lobell, D. B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl Acad. Sci. USA 107, 12052–12057 (2010).

    Article  CAS  Google Scholar 

  9. Schellnhuber, H. J., Rahmstorf, S. & Winkelmann, R. Why the right climate target was agreed in Paris. Nat. Clim. Change 6, 649–653 (2016).

    Article  Google Scholar 

  10. Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5°C. Nat. Geosci. 10, 741–747 (2017).

    Article  CAS  Google Scholar 

  11. Rockström, J. et al. A roadmap for rapid decarbonization. Science 355, 1269–1271 (2017).

    Article  Google Scholar 

  12. Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).

    Article  Google Scholar 

  13. Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

    Article  CAS  Google Scholar 

  14. Frank, S. et al. Reducing greenhouse gas emissions in agriculture without compromising food security? Environ. Res. Lett. 12, 105004 (2017).

    Article  Google Scholar 

  15. Obersteiner, M. et al. How to spend a dwindling greenhouse gas budget. Nat. Clim. Change 8, 7–10 (2018).

    Article  Google Scholar 

  16. Doelman, J. C. et al. Exploring SSP land-use dynamics using the IMAGE model: regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Change 48, 119–135 (2018).

    Article  Google Scholar 

  17. Kreidenweis, U. et al. Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects. Environ. Res. Lett. 11, 085001 (2016).

    Article  Google Scholar 

  18. Hasegawa, T. et al. Consequence of climate mitigation on the risk of hunger. Environ. Sci. Technol. 49, 7245–7253 (2015).

    Article  CAS  Google Scholar 

  19. Van Meijl, H. et al. Comparing impacts of climate change and mitigation on global agriculture by 2050. Environ. Res. Lett. 13, 064021 (2018).

    Article  Google Scholar 

  20. Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).

    Article  CAS  Google Scholar 

  21. Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 22, 1315–1324 (2016).

    Article  Google Scholar 

  22. Gernaat, D. E. H. J. et al. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Glob. Environ. Change 33, 142–153 (2015).

    Article  Google Scholar 

  23. van Vuuren, D. P. et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat. Clim. Change 8, 391–397 (2018).

    Article  Google Scholar 

  24. Beach, R. H. et al. Global mitigation potential and costs of reducing agricultural non-CO2 greenhouse gas emissions through 2030. J. Integr. Environ. Sci. 12, 87–105 (2015).

    Article  Google Scholar 

  25. Smith, P. et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 363, 789–813 (2008).

    Article  CAS  Google Scholar 

  26. Henderson, B. et al. Marginal costs of abating greenhouse gases in the global ruminant livestock sector. Mitig. Adapt. Strateg. Glob. Change 22, 1–26 (2015).

    Google Scholar 

  27. Wollenberg, E. et al. Reducing emissions from agriculture to meet the 2 °C target. Glob. Change Biol. 22, 3859–3864 (2016).

    Article  Google Scholar 

  28. Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).

    Article  Google Scholar 

  29. Frank, S. et al. Structural change as a key component for agricultural non-CO2 mitigation efforts. Nat. Commun. 9, 1060 (2018).

    Article  Google Scholar 

  30. Lucas, P. L., van Vuuren, D. P., Olivier, J. G. J. & den Elzen, M. G. J. Long-term reduction potential of non-CO2 greenhouse gases. Environ. Sci. Policy 10, 85–103 (2007).

    Article  Google Scholar 

  31. Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

    Article  Google Scholar 

  32. Vermont, B. & De Cara, S. How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture? Ecol. Econ. 69, 1373–1386 (2010).

    Article  Google Scholar 

  33. Stehfest, E. et al. Climate benefits of changing diet. Climatic Change 95, 83–102 (2009).

    Article  CAS  Google Scholar 

  34. Bajzelj, B. et al. Importance of food-demand management for climate mitigation. Nat. Clim. Change 4, 924–929 (2014).

    Article  Google Scholar 

  35. Springmann, M. et al. Mitigation potential and global health impacts from emissions pricing of food commodities. Nat. Clim. Change 7, 69–74 (2016).

    Article  Google Scholar 

  36. Popp, A., Lotze-Campen, H. & Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 20, 451–462 (2010).

    Article  Google Scholar 

  37. Bennetzen, E. H., Smith, P. & Porter, J. R. Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob. Change Biol. 22, 763–781 (2016).

    Article  Google Scholar 

  38. Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article  Google Scholar 

  39. Cohn, A. S. et al. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. Proc. Natl Acad. Sci. USA 111, 7236–7241 (2014).

    Article  CAS  Google Scholar 

  40. Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    Article  CAS  Google Scholar 

  41. Avetisyan, M., Golub, A., Hertel, T., Rose, S. & Henderson, B. Why a global carbon policy could have a dramatic impact on the pattern of the worldwide livestock production. Appl. Econ. Perspect. Policy 33, 584–605 (2011).

    Article  Google Scholar 

  42. Golub, A., Hertel, T., Lee, H. L., Rose, S. & Sohngen, B. The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry. Resour. Energy Econ. 31, 299–319 (2009).

    Article  Google Scholar 

  43. Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73 (2017).

    Article  Google Scholar 

  44. Lamb, A. et al. The potential for land sparing to offset greenhouse gas emissions from agriculture. Nat. Clim. Change 6, 488–492 (2016).

    Article  Google Scholar 

  45. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    Article  CAS  Google Scholar 

  46. Van Vuuren, D. et al. Carbon budgets and energy transition pathways. Environ. Res. Lett. 11, 075002 (2016).

    Article  Google Scholar 

  47. Henderson, B. et al. The power and pain of market-based carbon policies: a global application to greenhouse gases from ruminant livestock production. Mitig. Adapt. Strateg. Glob. Change 23, 349–369 (2018).

    Article  Google Scholar 

  48. Muhammad, A., Seale, J., Meade, B. & Regmi, A. International Evidence on Food Consumption Patterns: An Update Using 2005 International Comparison Program Data Technical Bulletin (1929) 53 (USDA-ERS, 2011).

  49. Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2016).

    Article  Google Scholar 

  50. O’Neill, B. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2014).

    Article  Google Scholar 

  51. Britz, W. & Witzke, H. P. CAPRI Model Documentation 2012 (Univ. of Bonn, 2012).

  52. M’barek, R. et al. Scenar 2030 - Pathways for the European Agriculture and Food Sector Beyond 2020 (Publications Office of the European Union, 2017).

  53. Pérez Domínguez, I. et al. An Economic Assessment of GHG Mitigation Policy Options for EU Agriculture (EcAMPA 2) (JRC, 2016).

  54. Fellmann, T. et al. Major challenges of integrating agriculture into climate change mitigation policy frameworks. Mitig. Adapt. Strateg. Glob. Change 23, 451–468 (2018).

    Article  Google Scholar 

  55. Himics, M. et al. Does the current trade liberalization agenda contribute to greenhouse gas emission mitigation in agriculture? Food Policy 76, 120–129 (2018).

    Article  Google Scholar 

  56. Leip, A. et al. Evaluation of the Livestock Sector’s Contribution to the EU Greenhouse Gas Emissions (GGELS) (European Commission, Joint Research Centre, 2010).

  57. Skalský, R. et al. GEO-BENE Global Database for Bio-Physical Modeling v. 1.0 - Concepts, Methodologies and Data Report No. 58 (International Institute for Applied Systems Analysis, 2008).

  58. Williams, J. R. in Computer Models of Watershed Hydrology (ed. Singh, V. P.) 909–1000 (Water Resources Publications, Highlands Ranch, 1995).

  59. Kindermann, G. E., McCallum, I., Fritz, S. & Obersteiner, M. A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fenn. 42, 387–396 (2008).

    Article  Google Scholar 

  60. Gusti, M. An algorithm for simulation of forest management decisions in the global forest model. Artifi. Intell. N4, 45–49 (2010).

    Google Scholar 

  61. Valin, H. et al. The future of food demand: understanding differences in global economic models. Agric. Econ. 45, 51–67 (2014).

    Article  Google Scholar 

  62. Havlík, P. et al. Global land-use implications of first and second generation biofuel targets. Energy Policy 39, 5690–5702 (2011).

    Article  Google Scholar 

  63. Stehfest, E. et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0. Model Description and Policy Applications (PBL Netherlands Environmental Assessment Agency, 2014).

  64. Woltjer, G. B. & Kuiper, M. H. (LEI Wageningen, 2014).

  65. Van Vuuren, D., Van Vliet, J. & Stehfest, E. Future Bio-Energy Potential Under Different Assumptions (2009).

  66. Van Meijl, H., van Rheenen, T., Tabeau, A. & Eickhout, B. The impact of different policy environments on agricultural land use in Europe. Agric. Ecosyst. Environ. 114, 21–38 (2006).

    Article  Google Scholar 

  67. Hertel, T. Global Trade Analysis: Modeling and Applications (Cambridge Univ. Press, Cambridge 1997).

  68. Eickhout, B. et al. Local and Global Consequences of the EU Renewable Directive for Biofuels MNP Report No. 500143001/2008 (Netherlands Environmental Assessment Agency, 2008).

  69. Banse, M. et al. Impact of EU biofuel policies on world agricultural production and land use. Biomass Bioenergy 35, 2385–2390 (2011).

    Article  Google Scholar 

  70. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse as emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2016).

    Article  Google Scholar 

  71. Global Food Losses and Food Waste: Extent, Causes, and Prevention 38 (FAO, 2011).

Download references

Acknowledgements

This study has been funded by the Joint Research Centre of the European Commission through the AGCLIM50 project, the European Union’s H2020 Project SUSFANS (grant agreement no. 633692), and CD-LINKS (grant agreement no. 64214). We thank the Food and Agriculture Organization of the United Nations (FAO) Statistics Division (ESS) for providing the FAOSTAT GHG emission data used in this study to compare with model projections. The views expressed are solely those of the authors and do not represent an official position of the employers or funders involved in the study.

Author information

Authors and Affiliations

Authors

Contributions

S.F., P.H., E.S., H.v.M., P.W. and I.P.-D. designed the research and performed the scenario development. Scenario implementation and simulations were carried out by P.W., I.P.-D., T.F. (CAPRI), S.F., P.H., H.V. (GLOBIOM), J.C.D., E.S. (IMAGE), A.T., J.F.L.K., M.v.D. and H.v.M. (MAGNET). S.F. performed the first analysis of the results, produced the figures and led the writing of the paper. All authors provided feedback and contributed to the discussion and interpretation of the results.

Corresponding author

Correspondence to Stefan Frank.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, S., Havlík, P., Stehfest, E. et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Clim Change 9, 66–72 (2019). https://doi.org/10.1038/s41558-018-0358-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-018-0358-8

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene