Article | Published:

Consumers underestimate the emissions associated with food but are aided by labels


Food production is a major cause of energy use and GHG emissions, and therefore diet change is an important behavioural strategy for reducing associated environmental impacts. However, a severe obstacle to diet change may be consumers’ underestimation of the environmental impacts of different types of food. Here we show that energy consumption and GHG emission estimates are significantly underestimated for foods, suggesting a possible blind spot suitable for intervention. In a second study, we find that providing consumers with information regarding the GHG emissions associated with the life cycle of food, presented in terms of a familiar reference unit (light-bulb minutes), shifts their actual purchase choices away from higher-emission options. Thus, although consumers’ poor understanding of the food system is a barrier to reducing energy use and GHG emissions, it also represents a promising area for simple interventions such as a well-designed carbon label.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings are available at

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Cook, J. et al. Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environ. Res. Lett. 11, 048002 (2016).

  2. 2.

    Pacala, S. & Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004).

  3. 3.

    Clune, S., Crossin, E. & Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 140, 766–783 (2017).

  4. 4.

    Bajželj, B. et al. Importance of food-demand management for climate mitigation. Nat. Clim. Change 4, 924–929 (2014).

  5. 5.

    Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 113, 4146–4151 (2016).

  6. 6.

    Cramton, P., MacKay, D. J., Ockenfels, A. & Stoft, S. Global Carbon Pricing: The Path to Climate Cooperation (MIT Press, Cambridge, 2017).

  7. 7.

    Dietz, T., Gardner, G. T., Gilligan, J., Stern, P. C. & Vandenbergh, M. P. Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. Proc. Natl Acad. Sci. USA 106, 18452–18456 (2009).

  8. 8.

    Schultz, P. W., Nolan, J. M., Cialdini, R. B., Goldstein, N. J. & Griskevicius, V. The constructive, destructive, and reconstructive power of social norms. Psychol. Sci. 18, 429–434 (2007).

  9. 9.

    Allcott, H. Social norms and energy conservation. J. Public Econ. 95, 1082–1095 (2011).

  10. 10.

    Abrahamse, W. & Steg, L. Social influence approaches to encourage resource conservation: A meta-analysis. Glob. Environ. Change 23, 1773–1785 (2013).

  11. 11.

    Hertwig, R. & Grüne-Yanoff, T. Nudging and boosting: steering or empowering good decisions. Perspect. Psychol. Sci. 12, 973–986 (2017).

  12. 12.

    Frick, J., Kaiser, F. G. & Wilson, M. Environmental knowledge and conservation behavior: exploring prevalence and structure in a representative sample. Pers. Individ. Differ. 37, 1597–1613 (2004).

  13. 13.

    Hines, J. M., Hungerford, H. R. & Tomera, A. N. Analysis and synthesis of research on responsible environmental behavior: a meta-analysis. J. Environ. Educ. 18, 1–8 (1987).

  14. 14.

    Attari, S. Z., DeKay, M. L., Davidson, C. I. & De Bruin, W. B. Public perceptions of energy consumption and savings. Proc. Natl Acad. Sci. USA 107, 16054–16059 (2010).

  15. 15.

    Vermeulen, S. J., Campbell, B. M. & Ingram, J. S. Climate change and food systems. Annu. Rev. Environ. Resour. 37, 195–222 (2012).

  16. 16.

    Jones, C. M. & Kammen, D. M. Quantifying carbon footprint reduction opportunities for US households and communities. Environ. Sci. Technol. 45, 4088–4095 (2011).

  17. 17.

    Shepon, A., Eshel, G., Noor, E. & Milo, R. Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes. Environ. Res. Lett. 11, 105002 (2016).

  18. 18.

    Berners-Lee, M., Hoolohan, C., Cammack, H. & Hewitt, C. The relative greenhouse gas impacts of realistic dietary choices. Energy Policy 43, 184–190 (2012).

  19. 19.

    Scarborough, P. et al. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim. Change 125, 179–192 (2014).

  20. 20.

    Hoolohan, C., Berners-Lee, M., McKinstry-West, J. & Hewitt, C. Mitigating the greenhouse gas emissions embodied in food through realistic consumer choices. Energy Policy 63, 1065–1074 (2013).

  21. 21.

    Hartmann, C. & Siegrist, M. Consumer perception and behaviour regarding sustainable protein consumption: a systematic review. Trends Food Sci. Technol. 61, 11–25 (2017).

  22. 22.

    Truelove, H. B. & Parks, C. Perceptions of behaviors that cause and mitigate global warming and intentions to perform these behaviors. J. Environ. Psychol. 32, 246–259 (2012).

  23. 23.

    Macdiarmid, J. I., Douglas, F. & Campbell, J. Eating like there’s no tomorrow: Public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. Appetite 96, 487–493 (2016).

  24. 24.

    Cordts, A., Nitzko, S. & Spiller, A. Consumer response to negative information on meat consumption in Germany. Int. Food Agribus. Manag. Rev. 17, 83–106 (2014).

  25. 25.

    De Boer, J., De Witt, A. & Aiking, H. Help the climate, change your diet: a cross-sectional study on how to involve consumers in a transition to a low-carbon society. Appetite 98, 19–27 (2016).

  26. 26.

    Vanclay, J. K. et al. Customer response to carbon labelling of groceries. J. Consumer Policy 34, 153–160 (2011).

  27. 27.

    Cohen, M. A. & Vandenbergh, M. P. The potential role of carbon labeling in a green economy. Energy Econ. 34, S53–S63 (2012).

  28. 28.

    Vandenbergh, M. P., Dietz, T. & Stern, P. C. Time to try carbon labelling. Nat. Clim. Change 1, 4–6 (2011).

  29. 29.

    Guenther, M., Saunders, C. M. & Tait, P. R. Carbon labeling and consumer attitudes. Carbon Manag. 3, 445–455 (2012).

  30. 30.

    Hartikainen, H., Roininen, T., Katajajuuri, J.-M. & Pulkkinen, H. Finnish consumer perceptions of carbon footprints and carbon labelling of food products. J. Clean. Prod. 73, 285–293 (2014).

  31. 31.

    Grunert, K. G., Hieke, S. & Wills, J. Sustainability labels on food products: Consumer motivation, understanding and use. Food Policy 44, 177–189 (2014).

  32. 32.

    Liu, T., Wang, Q. & Su, B. A review of carbon labeling: standards, implementation, and impact. Renew. Sustain. Energy Rev. 53, 68–79 (2016).

  33. 33.

    Schaefer, F. & Blanke, M. Opportunities and challenges of carbon footprint, climate or CO2 labelling for horticultural products. Erwerbs-Obstbau 56, 73–80 (2014).

  34. 34.

    Attari, S. Z. Perceptions of water use. Proc. Natl Acad. Sci. USA 111, 5129–5134 (2014).

  35. 35.

    Demidenko, E. Mixed Models: Theory and Applications (Wiley, Hoboken, 2004).

  36. 36.

    Larrick, R. P., Soll, J. B. & Keeney, R. L. Designing better energy metrics for consumers. Behav. Sci. Policy 1, 63–75 (2015).

  37. 37.

    Cowburn, G. & Stockley, L. Consumer understanding and use of nutrition labelling: a systematic review. Public Health Nutr. 8, 21–28 (2005).

  38. 38.

    Camilleri, A. R. & Larrick, R. P. Metric and scale design as choice architecture tools. J. Public Policy Mark. 33, 108–125 (2014).

  39. 39.

    Ungemach, C. et al. Translated attributes as choice architecture: aligning objectives and choices through decision signposts. Manag. Sci. 64, 2445–2459 (2018).

  40. 40.

    Thorndike, A. N., Riis, J., Sonnenberg, L. M. & Levy, D. E. Traffic-light labels and choice architecture: promoting healthy food choices. Am. J. Prev. Med. 46, 143–149 (2014).

  41. 41.

    Hayes, A. F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach (Guilford Press, New York, 2013).

  42. 42.

    Keil, F. C. Explanation and understanding. Annu. Rev. Psychol. 57, 227–254 (2006).

  43. 43.

    Rozenblit, L. & Keil, F. The misunderstood limits of folk science: an illusion of explanatory depth. Cogn. Sci. 26, 521–562 (2002).

  44. 44.

    Alter, A. L., Oppenheimer, D. M. & Zemla, J. C. Missing the trees for the forest: a construal level account of the illusion of explanatory depth. J. Pers. Soc. Psychol. 99, 436–451 (2010).

  45. 45.

    Greenhouse Gas Emissions: Understanding Global Warming Potentials (EPA, 2017);

  46. 46.

    Kaiser, F. G., Arnold, O. & Otto, S. Attitudes and defaults save lives and protect the environment jointly and compensatorily: Understanding the behavioral efficacy of nudges and other structural interventions. Behav. Sci. 4, 202–212 (2014).

  47. 47.

    Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl Acad. Sci. USA 111, 9199–9204 (2014).

  48. 48.

    Attari, S. Z., Poinsatte-Jones, K. & Hinton, K. Perceptions of water systems. Judgm. Decis. Mak. 12, 314–327 (2017).

  49. 49.

    Gardner, G. T. & Stern, P. C. Environmental Problems and Human Behavior 2nd edn (Pearson, Boston, 2002).

  50. 50.

    Steg, L. & Vlek, C. Encouraging pro-environmental behaviour: an integrative review and research agenda. J. Environ. Psychol. 29, 309–317 (2009).

  51. 51.

    Miller, D. T. & Prentice, D. A. Changing norms to change behavior. Annu. Rev. Psychol. 67, 339–361 (2016).

  52. 52.

    Whitmarsh, L. & O’Neill, S. Green identity, green living? The role of pro-environmental self-identity in determining consistency across diverse pro-environmental behaviours. J. Environ. Psychol. 30, 305–314 (2010).

  53. 53.

    Malka, A., Krosnick, J. A. & Langer, G. The association of knowledge with concern about global warming: trusted information sources shape public thinking. Risk Anal. 29, 633–647 (2009).

  54. 54.

    Head, M. et al. Life cycle impacts of protein-rich foods: creating robust yet extensive life cycle models for use in a consumer app. J. Clean. Prod. 73, 165–174 (2014).

  55. 55.

    Dunlap, R. E., Van Liere, K. D., Mertig, A. G. & Jones, R. E. New trends in measuring environmental attitudes: measuring endorsement of the new ecological paradigm: a revised NEP scale. J. Soc. Issues 56, 425–442 (2000).

  56. 56.

    Steptoe, A., Pollard, T. M. & Wardle, J. Development of a measure of the motives underlying the selection of food: the food choice questionnaire. Appetite 25, 267–284 (1995).

  57. 57.

    Lindeman, M. & Väänänen, M. Measurement of ethical food choice motives. Appetite 34, 55–59 (2000).

Download references


This research was supported by a grant from Duke University’s Bass Connections initiative. A.R.C. was supported by a fellowship from the American Australian Association. D.P.-E. received financial support from the Center for Climate and Energy Decision Making (SES-0949710) funded by the National Science Foundation. The authors would like to thank M. Seigerman for research assistance. The authors would also like to thank CleanMetrics for granting them access to FoodCarbonScope.

Author information

A.R.C., R.P.L., S.H. and D.P.-E. designed the research. A.R.C. and S.H. performed the research. A.R.C. and S.H. analysed the data. A.R.C., R.P.L. and D.P.-E. wrote the paper.

Competing interests

The authors declare no competing interests.

Correspondence to Adrian R. Camilleri.

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Supplementary Figures 1–4, Supplementary Tables 1–6, Supplementary references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Mean estimates of energy used relative to actual energy used.
Fig. 2: Mean estimates of GHG emitted relative to actual GHG emitted.
Fig. 3: Results of a mediation analysis in Study 2.