Consumers underestimate the emissions associated with food but are aided by labels

Abstract

Food production is a major cause of energy use and GHG emissions, and therefore diet change is an important behavioural strategy for reducing associated environmental impacts. However, a severe obstacle to diet change may be consumers’ underestimation of the environmental impacts of different types of food. Here we show that energy consumption and GHG emission estimates are significantly underestimated for foods, suggesting a possible blind spot suitable for intervention. In a second study, we find that providing consumers with information regarding the GHG emissions associated with the life cycle of food, presented in terms of a familiar reference unit (light-bulb minutes), shifts their actual purchase choices away from higher-emission options. Thus, although consumers’ poor understanding of the food system is a barrier to reducing energy use and GHG emissions, it also represents a promising area for simple interventions such as a well-designed carbon label.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mean estimates of energy used relative to actual energy used.
Fig. 2: Mean estimates of GHG emitted relative to actual GHG emitted.
Fig. 3: Results of a mediation analysis in Study 2.

Data availability

The data that support the plots within this paper and other findings are available at https://osf.io/smj67.

References

  1. 1.

    Cook, J. et al. Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environ. Res. Lett. 11, 048002 (2016).

    Article  Google Scholar 

  2. 2.

    Pacala, S. & Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    Clune, S., Crossin, E. & Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 140, 766–783 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Bajželj, B. et al. Importance of food-demand management for climate mitigation. Nat. Clim. Change 4, 924–929 (2014).

    Article  Google Scholar 

  5. 5.

    Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 113, 4146–4151 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Cramton, P., MacKay, D. J., Ockenfels, A. & Stoft, S. Global Carbon Pricing: The Path to Climate Cooperation (MIT Press, Cambridge, 2017).

  7. 7.

    Dietz, T., Gardner, G. T., Gilligan, J., Stern, P. C. & Vandenbergh, M. P. Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. Proc. Natl Acad. Sci. USA 106, 18452–18456 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Schultz, P. W., Nolan, J. M., Cialdini, R. B., Goldstein, N. J. & Griskevicius, V. The constructive, destructive, and reconstructive power of social norms. Psychol. Sci. 18, 429–434 (2007).

    Article  Google Scholar 

  9. 9.

    Allcott, H. Social norms and energy conservation. J. Public Econ. 95, 1082–1095 (2011).

    Article  Google Scholar 

  10. 10.

    Abrahamse, W. & Steg, L. Social influence approaches to encourage resource conservation: A meta-analysis. Glob. Environ. Change 23, 1773–1785 (2013).

    Article  Google Scholar 

  11. 11.

    Hertwig, R. & Grüne-Yanoff, T. Nudging and boosting: steering or empowering good decisions. Perspect. Psychol. Sci. 12, 973–986 (2017).

    Article  Google Scholar 

  12. 12.

    Frick, J., Kaiser, F. G. & Wilson, M. Environmental knowledge and conservation behavior: exploring prevalence and structure in a representative sample. Pers. Individ. Differ. 37, 1597–1613 (2004).

    Article  Google Scholar 

  13. 13.

    Hines, J. M., Hungerford, H. R. & Tomera, A. N. Analysis and synthesis of research on responsible environmental behavior: a meta-analysis. J. Environ. Educ. 18, 1–8 (1987).

    Article  Google Scholar 

  14. 14.

    Attari, S. Z., DeKay, M. L., Davidson, C. I. & De Bruin, W. B. Public perceptions of energy consumption and savings. Proc. Natl Acad. Sci. USA 107, 16054–16059 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    Vermeulen, S. J., Campbell, B. M. & Ingram, J. S. Climate change and food systems. Annu. Rev. Environ. Resour. 37, 195–222 (2012).

    Article  Google Scholar 

  16. 16.

    Jones, C. M. & Kammen, D. M. Quantifying carbon footprint reduction opportunities for US households and communities. Environ. Sci. Technol. 45, 4088–4095 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    Shepon, A., Eshel, G., Noor, E. & Milo, R. Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes. Environ. Res. Lett. 11, 105002 (2016).

    Article  Google Scholar 

  18. 18.

    Berners-Lee, M., Hoolohan, C., Cammack, H. & Hewitt, C. The relative greenhouse gas impacts of realistic dietary choices. Energy Policy 43, 184–190 (2012).

    Article  Google Scholar 

  19. 19.

    Scarborough, P. et al. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim. Change 125, 179–192 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Hoolohan, C., Berners-Lee, M., McKinstry-West, J. & Hewitt, C. Mitigating the greenhouse gas emissions embodied in food through realistic consumer choices. Energy Policy 63, 1065–1074 (2013).

    Article  Google Scholar 

  21. 21.

    Hartmann, C. & Siegrist, M. Consumer perception and behaviour regarding sustainable protein consumption: a systematic review. Trends Food Sci. Technol. 61, 11–25 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Truelove, H. B. & Parks, C. Perceptions of behaviors that cause and mitigate global warming and intentions to perform these behaviors. J. Environ. Psychol. 32, 246–259 (2012).

    Article  Google Scholar 

  23. 23.

    Macdiarmid, J. I., Douglas, F. & Campbell, J. Eating like there’s no tomorrow: Public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. Appetite 96, 487–493 (2016).

    Article  Google Scholar 

  24. 24.

    Cordts, A., Nitzko, S. & Spiller, A. Consumer response to negative information on meat consumption in Germany. Int. Food Agribus. Manag. Rev. 17, 83–106 (2014).

    Google Scholar 

  25. 25.

    De Boer, J., De Witt, A. & Aiking, H. Help the climate, change your diet: a cross-sectional study on how to involve consumers in a transition to a low-carbon society. Appetite 98, 19–27 (2016).

    Article  Google Scholar 

  26. 26.

    Vanclay, J. K. et al. Customer response to carbon labelling of groceries. J. Consumer Policy 34, 153–160 (2011).

    Article  Google Scholar 

  27. 27.

    Cohen, M. A. & Vandenbergh, M. P. The potential role of carbon labeling in a green economy. Energy Econ. 34, S53–S63 (2012).

    Article  Google Scholar 

  28. 28.

    Vandenbergh, M. P., Dietz, T. & Stern, P. C. Time to try carbon labelling. Nat. Clim. Change 1, 4–6 (2011).

    Article  Google Scholar 

  29. 29.

    Guenther, M., Saunders, C. M. & Tait, P. R. Carbon labeling and consumer attitudes. Carbon Manag. 3, 445–455 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Hartikainen, H., Roininen, T., Katajajuuri, J.-M. & Pulkkinen, H. Finnish consumer perceptions of carbon footprints and carbon labelling of food products. J. Clean. Prod. 73, 285–293 (2014).

    Article  Google Scholar 

  31. 31.

    Grunert, K. G., Hieke, S. & Wills, J. Sustainability labels on food products: Consumer motivation, understanding and use. Food Policy 44, 177–189 (2014).

    Article  Google Scholar 

  32. 32.

    Liu, T., Wang, Q. & Su, B. A review of carbon labeling: standards, implementation, and impact. Renew. Sustain. Energy Rev. 53, 68–79 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Schaefer, F. & Blanke, M. Opportunities and challenges of carbon footprint, climate or CO2 labelling for horticultural products. Erwerbs-Obstbau 56, 73–80 (2014).

    Article  Google Scholar 

  34. 34.

    Attari, S. Z. Perceptions of water use. Proc. Natl Acad. Sci. USA 111, 5129–5134 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Demidenko, E. Mixed Models: Theory and Applications (Wiley, Hoboken, 2004).

  36. 36.

    Larrick, R. P., Soll, J. B. & Keeney, R. L. Designing better energy metrics for consumers. Behav. Sci. Policy 1, 63–75 (2015).

    Article  Google Scholar 

  37. 37.

    Cowburn, G. & Stockley, L. Consumer understanding and use of nutrition labelling: a systematic review. Public Health Nutr. 8, 21–28 (2005).

    Article  Google Scholar 

  38. 38.

    Camilleri, A. R. & Larrick, R. P. Metric and scale design as choice architecture tools. J. Public Policy Mark. 33, 108–125 (2014).

    Article  Google Scholar 

  39. 39.

    Ungemach, C. et al. Translated attributes as choice architecture: aligning objectives and choices through decision signposts. Manag. Sci. 64, 2445–2459 (2018).

    Article  Google Scholar 

  40. 40.

    Thorndike, A. N., Riis, J., Sonnenberg, L. M. & Levy, D. E. Traffic-light labels and choice architecture: promoting healthy food choices. Am. J. Prev. Med. 46, 143–149 (2014).

    Article  Google Scholar 

  41. 41.

    Hayes, A. F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach (Guilford Press, New York, 2013).

  42. 42.

    Keil, F. C. Explanation and understanding. Annu. Rev. Psychol. 57, 227–254 (2006).

    Article  Google Scholar 

  43. 43.

    Rozenblit, L. & Keil, F. The misunderstood limits of folk science: an illusion of explanatory depth. Cogn. Sci. 26, 521–562 (2002).

    Article  Google Scholar 

  44. 44.

    Alter, A. L., Oppenheimer, D. M. & Zemla, J. C. Missing the trees for the forest: a construal level account of the illusion of explanatory depth. J. Pers. Soc. Psychol. 99, 436–451 (2010).

    Article  Google Scholar 

  45. 45.

    Greenhouse Gas Emissions: Understanding Global Warming Potentials (EPA, 2017); https://www.epa.gov/ghgemissions/understanding-global-warming-potentials

  46. 46.

    Kaiser, F. G., Arnold, O. & Otto, S. Attitudes and defaults save lives and protect the environment jointly and compensatorily: Understanding the behavioral efficacy of nudges and other structural interventions. Behav. Sci. 4, 202–212 (2014).

    Article  Google Scholar 

  47. 47.

    Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl Acad. Sci. USA 111, 9199–9204 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    Attari, S. Z., Poinsatte-Jones, K. & Hinton, K. Perceptions of water systems. Judgm. Decis. Mak. 12, 314–327 (2017).

    Google Scholar 

  49. 49.

    Gardner, G. T. & Stern, P. C. Environmental Problems and Human Behavior 2nd edn (Pearson, Boston, 2002).

  50. 50.

    Steg, L. & Vlek, C. Encouraging pro-environmental behaviour: an integrative review and research agenda. J. Environ. Psychol. 29, 309–317 (2009).

    Article  Google Scholar 

  51. 51.

    Miller, D. T. & Prentice, D. A. Changing norms to change behavior. Annu. Rev. Psychol. 67, 339–361 (2016).

    Article  Google Scholar 

  52. 52.

    Whitmarsh, L. & O’Neill, S. Green identity, green living? The role of pro-environmental self-identity in determining consistency across diverse pro-environmental behaviours. J. Environ. Psychol. 30, 305–314 (2010).

    Article  Google Scholar 

  53. 53.

    Malka, A., Krosnick, J. A. & Langer, G. The association of knowledge with concern about global warming: trusted information sources shape public thinking. Risk Anal. 29, 633–647 (2009).

    Article  Google Scholar 

  54. 54.

    Head, M. et al. Life cycle impacts of protein-rich foods: creating robust yet extensive life cycle models for use in a consumer app. J. Clean. Prod. 73, 165–174 (2014).

    Article  Google Scholar 

  55. 55.

    Dunlap, R. E., Van Liere, K. D., Mertig, A. G. & Jones, R. E. New trends in measuring environmental attitudes: measuring endorsement of the new ecological paradigm: a revised NEP scale. J. Soc. Issues 56, 425–442 (2000).

    Article  Google Scholar 

  56. 56.

    Steptoe, A., Pollard, T. M. & Wardle, J. Development of a measure of the motives underlying the selection of food: the food choice questionnaire. Appetite 25, 267–284 (1995).

    CAS  Article  Google Scholar 

  57. 57.

    Lindeman, M. & Väänänen, M. Measurement of ethical food choice motives. Appetite 34, 55–59 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from Duke University’s Bass Connections initiative. A.R.C. was supported by a fellowship from the American Australian Association. D.P.-E. received financial support from the Center for Climate and Energy Decision Making (SES-0949710) funded by the National Science Foundation. The authors would like to thank M. Seigerman for research assistance. The authors would also like to thank CleanMetrics for granting them access to FoodCarbonScope.

Author information

Affiliations

Authors

Contributions

A.R.C., R.P.L., S.H. and D.P.-E. designed the research. A.R.C. and S.H. performed the research. A.R.C. and S.H. analysed the data. A.R.C., R.P.L. and D.P.-E. wrote the paper.

Corresponding author

Correspondence to Adrian R. Camilleri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Supplementary Figures 1–4, Supplementary Tables 1–6, Supplementary references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Camilleri, A.R., Larrick, R.P., Hossain, S. et al. Consumers underestimate the emissions associated with food but are aided by labels. Nature Clim Change 9, 53–58 (2019). https://doi.org/10.1038/s41558-018-0354-z

Download citation

Further reading