Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Natural variability of Southern Ocean convection as a driver of observed climate trends

Abstract

Observed Southern Ocean surface cooling and sea-ice expansion over the past several decades are inconsistent with many historical simulations from climate models. Here we show that natural multidecadal variability involving Southern Ocean convection may have contributed strongly to the observed temperature and sea-ice trends. These observed trends are consistent with a particular phase of natural variability of the Southern Ocean as derived from climate model simulations. Ensembles of simulations are conducted starting from differing phases of this variability. The observed spatial pattern of trends is reproduced in simulations that start from an active phase of Southern Ocean convection. Simulations starting from a neutral phase do not reproduce the observed changes, similarly to the multimodel mean results of CMIP5 models. The long timescales associated with this natural variability show potential for skilful decadal prediction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Annual SST and sea-ice time series and trends.
Fig. 2: SO internal variability in the pre-industrial control run.
Fig. 3: Dependence of transient climate response on the initial state of SO convection.

Similar content being viewed by others

Data availability

The HadISST data are available at https://www.metoffice.gov.uk/hadobs/hadisst/data; ref. 51. The NOAA’s ERSST data set is available at https://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v3b; ref. 52. The NSIDC NASA Team SIC and area data are available at http://nsidc.org/data/NSIDC-0051; ref. 53. The 20CRv2 data set is available at https://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2.html; ref. 54. The source code of ocean component MOM6 of the SPEAR_AM2 model is available at https://github.com/NOAA-GFDL/MOM6. The model experiments that support the findings of this study are available from the corresponding author on request.

References

  1. Stroeve, J., Holland, M. M., Meir, W., Scambos, T. & Serreze, M. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett. 34, L09501 (2007).

    Article  Google Scholar 

  2. Turner, J. et al. An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Clim. 26, 1473–1484 (2013).

    Article  Google Scholar 

  3. Stammerjohn, S., Martinson, D. G., Smith, R., Yuan, X. & Rind, D. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res. 113, C03S90 (2008).

    Article  Google Scholar 

  4. Simpkins, G. R., Ciasto, L. M. & England, M. H. Observed variations in multidecadal Antarctic sea ice trends during 19792012. Geophys. Res. Lett. 40, 3643–3648 (2013).

    Article  Google Scholar 

  5. Holland, P. R. & Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nat Geosci. 5, 872–875 (2012).

    Article  CAS  Google Scholar 

  6. Kwok, R. & Comiso, J. C. Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation. J. Clim. 15, 487–501 (2002).

    Article  Google Scholar 

  7. Turner, J. et al. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett. 36, L08502 (2009).

    Article  Google Scholar 

  8. Matear, R. J., O’Kane, T. J., Risbey, J. S. & Chamberlain, M. Sources of heterogeneous variability and trends in Antarctic sea-ice. Nat. Commun. 6, 8656 (2015).

    Article  CAS  Google Scholar 

  9. Purich, A. et al. Tropical pacific SST drivers of recent Antarctic sea ice trends. J. Clim. 29, 8931–8948 (2016).

    Article  Google Scholar 

  10. Meehl, G. A., Arblaster, J. M., Bitz, C. M., Chung, C. T. Y. & Teng, H. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci. 9, 590–595 (2016).

    Article  CAS  Google Scholar 

  11. Li, X., Holland, D. M., Gerber, E. P. & Yoo, C. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature 505, 538–542 (2014).

    Article  CAS  Google Scholar 

  12. Ding, Q., Steig, E. J., Battisti, D. S. & Küttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nat Geosci. 4, 398–403 (2011).

    Article  CAS  Google Scholar 

  13. Lee, S.-K. et al. Wind-driven ocean dynamics impact on the contrasting sea-ice trends around West Antarctica. J. Geophys. Res. Oceans 122, 4413–4430 (2017).

    Article  Google Scholar 

  14. Zhang, L., Delworth, T. L. & Zeng, F. The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern Ocean. Clim. Dynam. 48, 2065–2085 (2017).

    Article  Google Scholar 

  15. de Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R. & Marinova, I. Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Clim. Change 4, 278–282 (2014).

    Article  Google Scholar 

  16. Bintanja, R., Van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B. & Katsman, C. A. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6, 376–379 (2013).

    Article  CAS  Google Scholar 

  17. Sigmond, M. & Fyfe, J. C. Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys. Res. Lett. 37, L18502 (2010).

    Google Scholar 

  18. Swart, N. C. & Fyfe, J. C. The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys. Res. Lett. 40, 4328–4332 (2013).

    Article  Google Scholar 

  19. Pauling, A. G., Bitz, C. M., Smith, I. J. & Langhorne, P. J. The response of the Southern Ocean and Antarctic sea ice to freshwater from ice shelves in an earth system model. J. Clim. 29, 1655–1672 (2016).

    Article  Google Scholar 

  20. Purich, A., Cai, W., England, M. H. & Cowan, T. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat. Commun. 7, 10409 (2016).

    Article  CAS  Google Scholar 

  21. Zunz, V., Goosse, H. & Massonnet, F. How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? Cryosphere 7, 451–468 (2013).

    Article  Google Scholar 

  22. Polvani, L. M. & Smith, K. L. Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys. Res. Lett. 40, 3195–3199 (2013).

    Article  Google Scholar 

  23. Martinson, D. G., Killworth, P. D. & Gordon, A. L. A convective model for the Weddell Polynya. J. Phys. Oceanogr. 11, 466–488 (1981).

    Article  Google Scholar 

  24. Gordon, A. L. Weddell deep water variability. J. Mar. Res. 40, 199–217 (1982).

    Google Scholar 

  25. Purkey, S. G. & Johnson, G. C. Global contraction of Antarctic bottom water between the 1980s and 2000s. J. Clim. 25, 5830–5844 (2012).

    Article  Google Scholar 

  26. Purkey, S. G. & Johnson, G. C. Antarctic bottom water warming and freshening: contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim. 26, 6105–6122 (2013).

    Article  Google Scholar 

  27. Fan, T., Deser, C. & Schneider, D. P. Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys. Res. Lett. 41, 2419–2426 (2014).

    Article  Google Scholar 

  28. Latif, M., Martin, T. & Park, W. Southern Ocean sector centennial climate variability and recent decadal trends. J. Clim. 26, 7767–7782 (2013).

    Article  Google Scholar 

  29. Cook, E. R., Buckley, B. M., D'Arrigo, R. D. & Peterson, M. J. 2000. Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree rings and their relationship to large-scale sea surface temperature anomalies. Clim. Dynam. 16, 79–91 (2000).

    Article  Google Scholar 

  30. LeQuesne, C., Acuña, C., Boninsegna, J. A., Rivera, A. & Barichivich, J. Long-term glacier variations in the central Andes of Argentina and Chile, inferred from historical records and tree-ring reconstructed precipitation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 334–344 (2009).

    Article  Google Scholar 

  31. Zanowski, H., Hallberg, R. & Sarmiento, J. L. Abyssal ocean warming and salinification after Weddell polynyas in the GFDL CM2G coupled climate model. J. Phys. Oceanogr. 45, 2755–2772 (2015).

    Article  Google Scholar 

  32. Cabre, A., Marinov, I. & Gnanadesikan, A. Global atmospheric teleconnections and multidecadal climate oscillations driven by Southern Ocean convection. J. Clim. 30, 8107–8126 (2017).

    Article  Google Scholar 

  33. Dufour, C. O. et al. Preconditioning of the Weddell Sea polynya by the ocean mesoscale and dense water overflows. J. Clim. 30, 7719–7737 (2017).

    Article  Google Scholar 

  34. Reintges, A., Martin, T., Latif, M. & Park, W. Physical controls of Southern Ocean deep-convection variability in CMIP5 models and the Kiel Climate Model. Geophys. Res. Lett. 44, 6951–6958 (2017).

    Article  Google Scholar 

  35. Martin, T., Park, W. & Latif, M. Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model. Clim. Dynam. 40, 2005–2022 (2013).

    Article  Google Scholar 

  36. Zhang, L. & Delworth, T. L. Impact of the Antarctic bottom water formation on the Weddell Gyre and its northward propagation characteristics in GFDL model. J. Geophys. Res. Oceans 121, 5825–5846 (2016).

    Article  Google Scholar 

  37. Zhang, L., Delworth, T. L. & Jia, L. Diagnosis of decadal predictability of Southern Ocean sea surface temperature in the GFDL CM2.1 model. J. Clim. 30, 6309–6328 (2017).

    Article  Google Scholar 

  38. Lecomte, O. et al. Vertical ocean heat redistribution sustaining sea-ice concentration trends in the Ross Sea. Nat. Commun. 8, 258 (2017).

    Article  Google Scholar 

  39. Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

    Article  CAS  Google Scholar 

  40. Cheon, W. G., Park, Y., Toggweiler, J. R. & Lee, S. The relationship of Weddell Polynya and open-ocean deep convection to the Southern Hemisphere westerlies. J. Phys. Ocean. 44, 694–713 (2014).

    Article  Google Scholar 

  41. Seviour, W. J. M., Gnanadesikan, A. & Waugh, D. W. The transient response of the Southern Ocean to stratospheric ozone depletion. J. Clim. 29, 7383–7396 (2016).

    Article  Google Scholar 

  42. Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411–415 (2016).

    Article  CAS  Google Scholar 

  43. Delworth, T. L. & Zeng, F. Simulated impact of altered Southern Hemisphere winds on the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 35, L20708 (2018).

    Article  Google Scholar 

  44. Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S. & Plumb, A. Antarctic Ocean and sea ice response to ozone depletion: a two-time-scale problem. J. Clim. 28, 1206–1226 (2015).

    Article  Google Scholar 

  45. Stössel, A. et al. Controlling high-latitude Southern Ocean convection in climate models. Ocean Model. 86, 58–75 (2015).

    Article  Google Scholar 

  46. Stuecker, M. F., Bitz, C. M. & Armour, K. C. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season. Geophys. Res. Lett. 44, 9008–9019 (2017).

    Article  Google Scholar 

  47. Zhang, L. et al. Estimating decadal predictability for the Southern Ocean using the GFDL CM2.1 model. J. Clim. 30, 5187–5203 (2017).

    Article  Google Scholar 

  48. Rysgaard, S. et al. Sea ice contribution to the airsea CO2 exchange in the Arctic and Southern Oceans. Tellus B 63, 823–830 (2011).

    Article  CAS  Google Scholar 

  49. Brierley, A. S. et al. Antarctic krill under sea-ice: elevated abundance in a narrow band just south of ice edge. Science 295, 1890–1892 (2002).

    Article  CAS  Google Scholar 

  50. Leung, S., Cabre, A. & Marinov, I. A latitudinally banded phytoplankton response to 21st century climate change in the Southern Ocean across the CMIP5 model suite. Biogeoscience 12, 5715–5734 (2015).

    Article  Google Scholar 

  51. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  52. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAAs historical merged landocean surface temperature analysis (18802006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

  53. Cavalieri, D. J., Parkinson, C. L., Gloersen, P. & Zwally H. J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 1996); https://doi.org/10.5067/8GQ8LZQVL0VL

  54. Compo, G. P. et al. The Twentieth Century Reanalysis project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011).

    Article  Google Scholar 

  55. Bracegirdle, T. J. et al. Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. J. Geophys. Res. 118, 547–562 (2013).

    Google Scholar 

  56. Vecchi, G. A. et al. On the seasonal forecasting of regional tropical cyclone activity. J. Clim. 27, 7994–8016 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. M. Polvani and M. Bushuk for their helpful discussions on the preliminary results. We thank L. Zanna and M. Bushuk for their valuable suggestions and comments on our paper as internal reviewers. We thank A. Shao and M. Harrison for their great help in producing closed heat budget terms in SPEAR_AM2 model.

Author information

Authors and Affiliations

Authors

Contributions

L.Z. and T.L.D. conceived the idea and wrote the paper. L.Z. wrote the first draft, performed the analysis and conducted the sensitivity experiments. T.L.D. and W.C. lead the development of the SPEAR_AM2 model. X.Y. leads the SLP assimilation based on the SPEAR_AM2 model. All authors contributed to improving the manuscript.

Corresponding author

Correspondence to Liping Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–16, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Delworth, T.L., Cooke, W. et al. Natural variability of Southern Ocean convection as a driver of observed climate trends. Nature Clim Change 9, 59–65 (2019). https://doi.org/10.1038/s41558-018-0350-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-018-0350-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing