Madden–Julian oscillation changes under anthropogenic warming


The Madden–Julian oscillation (MJO) produces a region of enhanced precipitation that travels eastwards along the Equator in a 40–50 day cycle, perturbing tropical and high-latitude winds, and thereby modulating extreme weather events such as flooding, hurricanes and heat waves. Here, we synthesize current understanding on projected changes in the MJO under anthropogenic warming, demonstrating that MJO-related precipitation variations are likely to increase in intensity, whereas wind variations are likely to increase at a slower rate or even decrease. Nevertheless, future work should address uncertainties in the amplitude of precipitation and wind changes and the impacts of projected SST patterns, with the aim of improving predictions of the MJO and its associated extreme weather.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Model average intraseasonal precipitation and wind amplitude changes with warming.
Fig. 2: Indo-Pacific warm pool intraseasonal precipitation and wind amplitude changes with warming.
Fig. 3: Indo-Pacific warm pool dry static energy and latent heat profile changes with warming.
Fig. 4: Indo-Pacific warm pool α and intraseasonal precipitation amplitude changes with warming.
Fig. 5: Schematic summarizing our best understanding of changes in MJO convective anomalies and the anomalous large-scale circulation.


  1. 1.

    Madden, R. & Julian, P. R. in Intraseasonal Variability in the Atmosphere–Ocean Climate System (eds Lau, K. M. & Waliser, D. E.) Ch. 1 (Praxis, Springer, Berlin, 2005).

  2. 2.

    Maloney, E. D. & Hartmann, D. L. Modulation of eastern north Pacific hurricanes by the Madden-Julian oscillation. J. Clim. 13, 1451–1460 (2000).

    Article  Google Scholar 

  3. 3.

    Klotzbach, P. J. & Oliver, E. C. J. Modulation of Atlantic basin tropical cyclone activity by the Madden-Julian Oscillation (MJO) from 1905–2011. J. Clim. 28, 204–217 (2015).

    Article  Google Scholar 

  4. 4.

    McPhaden, M. J. Genesis and evolution of the 1997–98 El Niño. Science 283, 950–954 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    Moore, A. M. & Kleeman, R. Stochastic forcing of ENSO by the intraseasonal oscillation. J. Clim. 12, 1199–1220 (1999).

    Article  Google Scholar 

  6. 6.

    Lin, H., Brunet, G. & Derome, J. An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Clim. 22, 364–380 (2009).

    Article  Google Scholar 

  7. 7.

    Zhang, C. Madden-Julian oscillation: bridging weather and climate. Bull. Am. Meteorol. Soc. 94, 1849–1870 (2013).

    Article  Google Scholar 

  8. 8.

    Guan, B., Waliser, D. E., Molotch, N. P., Fetzer, E. J. & Neiman, P. J. Does the Madden-Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon. Weather Rev. 140, 325–342 (2012).

    Article  Google Scholar 

  9. 9.

    Ralph, F. M. & Dettinger, M. D. Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Am. Meteorol. Soc. 93, 783–790 (2012).

    Article  Google Scholar 

  10. 10.

    Mundhenk, B. D., Barnes, E. A., Maloney, E. D. & Baggett, C. F. Skillful subseasonal prediction of atmospheric river activity based on the Madden Julian oscillation and the Quasi-Biennial oscillation. npj Clim. Atmos. Sci 1, 20177 (2018).

    Article  Google Scholar 

  11. 11.

    Baggett, C. F., Barnes, E. A., Maloney, E. D. & Mundhenk, B. D. Advancing atmospheric river forecasts into subseasonal timescales. Geophys. Res. Lett. 44, 7528–7536 (2017).

    Article  Google Scholar 

  12. 12.

    Arnold, N. P., Branson, M., Kuang, Z., Randall, D. A. & Tziperman, E. MJO intensification with warming in the superparameterized CESM. J. Clim. 28, 2706–2724 (2015). This study used a gold standard model to demonstrate stronger MJO precipitation variability in a 4×CO 2 climate and features a detailed process oriented diagnosis that highlights the importance of an increased vertical moisture gradient.

    Article  Google Scholar 

  13. 13.

    Hand, E. The storm king. Science 350, 22–25 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Wolding, B. O., Maloney, E. D., Henderson, S. A. & Branson, M. Climate change and the Madden-Julianoscillation: a vertically resolved weak temperature gradient analysis 307-331. J. Adv. Model. Earth Syst. 9, 307–331 (2017). This modelling study provided a process-level diagnosis of the MJO in a 4×CO 2 climate through novel use of the moisture budget, and documented a potential weakening of MJO teleconnections to higher latitudes in a warmer climate.

    Article  Google Scholar 

  15. 15.

    Adames, A. ́F. & Kim, D. The MJO as a dispersive, convectively coupled moisture wave: theory and observations. J. Atmos. Sci. 73, 913–941 (2016).

    Article  Google Scholar 

  16. 16.

    Slingo, J. M., Rowell, D. P., Sperber, K. R. & Nortley, F. On the predictability of the interannual behaviour of the Madden‐Julian oscillation and its relationship with El Nino. Q. J. R. Meteorol. Soc. 125, 583–609 (1999).

    Google Scholar 

  17. 17.

    Jones, C. & Carvalho, L. M. V. Changes in the activity of the Madden–Julian oscillation during 1958–2004. J. Clim. 19, 6353–6370 (2006).

    Article  Google Scholar 

  18. 18.

    Lee, S.‐H. & Seo, K.-H. A multi‐scale analysis of the interdecadal change in the Madden–Julian Oscillation, Atmos. Korean Meteorol. 21, 143–149 (2011).

    Google Scholar 

  19. 19.

    Oliver, E. C. & Thompson, K. R. A reconstruction of Madden–Julian Oscillation variability from 1905 to 2008. J. Clim. 25, 1996–2019 (2012).

    Article  Google Scholar 

  20. 20.

    Tao, L., Zhao, J. & Li, T. Trend analysis of tropical intraseasonal oscillations in the summer and winter during 1982–2009. Int. J. Climatol. 35, 3969–3978 (2015).

    Article  Google Scholar 

  21. 21.

    Yoo, C., Feldstein, S. & Lee, S. The impact of the Madden‐Julian oscillation trend on the Arctic amplification of surface air temperature during the 1979–2008 boreal winter. Geophys. Res. Lett. 38, L24804 (2011).

    Article  Google Scholar 

  22. 22.

    Pohl, B. & Matthews, A. J. Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J. Clim. 20, 2659–2674 (2007).

    Article  Google Scholar 

  23. 23.

    Schubert, J. J., Stevens, B. & Crueger, T. Madden‐Julian oscillation as simulated by the Max Planck Institute for Meteorology Earth System Model: Over the last and into the next millennium. J. Adv. Model. Earth Syst. 5, 71–84 (2013).

    Article  Google Scholar 

  24. 24.

    Jones, C. & Carvalho, L. M. V. Will global warming modify the activity of the Madden–Julian oscillation? Q. J. R. Meteorol. Soc. 137, 544–552 (2010).

    Article  Google Scholar 

  25. 25.

    Xie, S.‐P. et al. Global warming pattern formation: Sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).

    Article  Google Scholar 

  26. 26.

    Benedict, J. J., Maloney, E. D., Sobel, A. H. & Frierson, D. M. Gross moist stability and MJO simulation skill in three full-physics GCMs. J. Atmos. Sci. 71, 3327–3349 (2014).

    Article  Google Scholar 

  27. 27.

    Raymond, D. J., Sessions, S. L., Sobel, A. H. & Fuchs, Z. The mechanics of gross moist stability. J. Adv. Model. Earth Syst. 1, 9 (2009).

    Article  Google Scholar 

  28. 28.

    Hannah, W. M. & Maloney, E. D. The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. J. Adv. Model. Earth Syst. 6, 420–440 (2014).

    Article  Google Scholar 

  29. 29.

    Maloney, E. D. & Xie, S.-P. Sensitivity of MJO activity to the pattern of climate warming. J. Adv. Model. Earth Syst. 5, 32–47 (2013). This modelling study explains why MJO wind variability may change at a different rate than precipitation variability with warming, and showed that changes in MJO amplitude depend strongly on the pattern of SST change.

    Article  Google Scholar 

  30. 30.

    Arnold, N. P., Kuang, Z. & Tziperman, E. Enhanced MJO-like variability at high SST. J. Clim. 26, 988–1001 (2013).

    Article  Google Scholar 

  31. 31.

    Takahashi, C., Sato, N., Seiki, A., Yoneyama, K. & Shirooka, R. Projected future change of MJO and its extratropical teleconnection in East Asia during the northern winter simulated in IPCC AR4 models. SOLA 7, 201–204 (2011). A comprehensive study that used a multimodel suite to demonstrate a wide spread in the strength of MJO convection changes in a warming climate that is dependent on the pattern of SST change.

    Article  Google Scholar 

  32. 32.

    Hendon, H. H., Zhang, C. & Glick, J. D. Interannual variation of the Madden–Julian oscillation during austral summer. J. Clim. 12, 2538–2550 (1999).

    Article  Google Scholar 

  33. 33.

    Hendon, H. H., Wheeler, M. C. & Zhang, C. Seasonal dependence of the MJO–ENSO relationship. J. Clim. 20, 531–543 (2007).

    Article  Google Scholar 

  34. 34.

    Yoo, C. & Son, S. W. Modulation of the boreal wintertime Madden‐Julian oscillation by the stratospheric quasi‐biennial oscillation. Geophys. Res. Lett. 43, 1392–1398 (2016).

    Article  Google Scholar 

  35. 35.

    Nishimoto, E. & Yoden, S. Influence of the stratospheric quasi-biennial oscillation on the Madden-Julian oscillation during Austral summer. J. Atmos. Sci. 74, 1105–1125 (2017).

    Article  Google Scholar 

  36. 36.

    Son, S., Lim, Y., Yoo, C., Hendon, H. & Kim, J. Stratospheric control of Madden-Julian oscillation. J. Clim. 30, 1909–1922 (2017).

    Article  Google Scholar 

  37. 37.

    Zveryaev, I. I. Interdecadal changes in the zonal wind and the intensity of intraseasonal oscillations during boreal summer Asian monsoon. Tellus A 54, 288–298 (2002).

    Article  Google Scholar 

  38. 38.

    Meehl, G. A. et al. The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007).

    Article  Google Scholar 

  39. 39.

    Adames, Á. F., Kim, D., Sobel, A. H., Del Genio, A. & Wu, J. Changes in the structure and propagation ofthe MJO with increasing CO2. J. Adv. Model. Earth Syst. 9, 1251–1268 (2017). Comprehensive model analysis of changes to MJO characteristics in a warmer climate, including not only amplitude changes, but also propagation speed, period and relationship to background intraseasonal variability.

    Article  Google Scholar 

  40. 40.

    Chang, C.‐W. J., Tseng, W.-L., Hsu, H.-H., Keenlyside, N. & Tsuang, B. J. The Madden‐Julian Oscillation in a warmer world. Geophys. Res. Lett. 42, 6034–6042 (2015).

    Article  Google Scholar 

  41. 41.

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  42. 42.

    Liu, P. Changes in a modeled MJO with idealized global warming. Clim. Dynam. 40, 761–773 (2013).

    Article  Google Scholar 

  43. 43.

    Liu, P. et al. MJO change with A1B global warming estimated by the 40-km ECHAM5. Clim. Dynam. 41, 1009–1023 (2013).

    Article  Google Scholar 

  44. 44.

    Bui, H. X. & Maloney, E. D. Changes in Madden-Julian Oscillation precipitation and wind variance under global warming. Geophys. Res. Lett. 45, 7148–7155 (2018).

    Article  Google Scholar 

  45. 45.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An Overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  46. 46.

    Henderson, S. A., Maloney, E. D. & Son, S. W. Madden-Julian oscillation teleconnections: the impact of the basic state and MJO representation in general circulation models. J. Clim. 30, 4567–4587 (2017).

    Article  Google Scholar 

  47. 47.

    Lee, S. Why are the climatological zonal winds easterly in the equatorial upper troposphere? J. Atmos. Sci. 56, 1353–1363 (1999).

    Article  Google Scholar 

  48. 48.

    Suarez, M. J. & Duffy, D. G. Terrestrial superrotation: A bifurcation of the general circulation. J. Atmos. Sci. 49, 1541–1554 (1992).

    Article  Google Scholar 

  49. 49.

    Caballero, R. & Huber, M. Spontaneous transition to superrotation in warm climates simulated by CAM3. Geophys. Res. Lett. 37, L11701 (2010).

    Article  Google Scholar 

  50. 50.

    Arnold, N. P. et al. The effects of explicit atmospheric convection at high CO2. Proc. Natl Acad. Sci. USA 111, 10943–10948 (2014).

    CAS  Article  Google Scholar 

  51. 51.

    Carlson, H. & Caballero, R. Enhanced MJO and transition to superrotation in warm climates. J. Adv. Model. Earth Syst. 8, 304–318 (2016). This modelling study highlights the transition to superrotation in a warmer climate and presents a novel hypothesis for how this transition supports a stronger MJO.

    Article  Google Scholar 

  52. 52.

    Pritchard, M. S. & Yang, D. Response of the superparameterized Madden‐Julian Oscillation to extreme climate and basic state variation challenges a moisture mode view. J. Clim. 29, 4995–5008 (2016).

    Article  Google Scholar 

  53. 53.

    Subramanian, A. et al. The MJO and global warming: a study in CCSM4. Clim. Dynam. 42, 2019–2031 (2014).

    Article  Google Scholar 

  54. 54.

    Kang, W. & Tziperman, E. More frequent sudden stratospheric warming events due to enhanced MJO forcing expected in a warmer climate. J. Clim. 30, 8727–8743 (2017).

    Article  Google Scholar 

  55. 55.

    Randall, D., Khairoutdinov, M., Arakawa, A. & Grabowski, W. Breaking the cloud parameterization deadlock. Bull. Am. Meteorol. Soc. 84, 1547–1564 (2003).

    Article  Google Scholar 

  56. 56.

    Zelinka, M. D. & Hartmann, D. L. Why is longwave cloud feedback positive? J. Geophys. Res. 115, D16117 (2010).

    Article  Google Scholar 

  57. 57.

    Song, E.‐J. & Seo, K.-H. Past‐ and present‐day Madden‐Julian Oscillation in CNRM‐CM5. Geophys. Res. Lett. 43, 4042–4048 (2016).

    Article  Google Scholar 

  58. 58.

    Sobel, A. H. & Bretherton, C. S. Modeling tropical precipitation in a single column. J. Clim. 13, 4378–4392 (2000).

    Article  Google Scholar 

  59. 59.

    Holloway, C. E. & Neelin, J. D. Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci. 66, 1665–1683 (2009).

    Article  Google Scholar 

  60. 60.

    Adames, Á. F., Kim, D., Sobel, A. H., Del Genio, A. & Wu, J. Characterization of moist processes associated with changes in the propagation of the MJO with increasing CO2. J. Adv. Model. Earth Syst. 9, 2946–2967 (2017).This modelling study presents a detailed process-oriented diagnosis of changes in MJO amplitude and propagation speed in a warmer climate in the context of modern theory.

    Article  Google Scholar 

  61. 61.

    Chikira, M. Eastward‐propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci. 71, 615–639 (2014).

    Article  Google Scholar 

  62. 62.

    Wolding, B. O., Maloney, E. D. & Branson, M. Vertically resolved weak temperature gradient analysis of the Madden-Julian oscillation in SP-CESM. J. Adv. Model. Earth. Syst. 8, 1586–1619 (2016).

    Article  Google Scholar 

  63. 63.

    Maloney, E. D. The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Clim. 22, 711–729 (2009).

    Article  Google Scholar 

  64. 64.

    Sardeshmukh, P. D. & Hoskins, B. J. The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci. 45, 1228–1251 (1988).

    Article  Google Scholar 

  65. 65.

    Hoskins, B. J. & Karoly, D. J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981).

    Article  Google Scholar 

  66. 66.

    Coats, S. & Karnauskas, K. B. Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett. 44, 9928–9937 (2017).

    Article  Google Scholar 

  67. 67.

    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  68. 68.

    Neelin, J. D., Langenbrunner, B., Meyerson, J. E., Hall, A. & Berg, N. California winter precipitation change under global warming in the Coupled Model Intercomparison Project 5 ensemble. J. Clim. 26, 6238–6256 (2013).

    Article  Google Scholar 

  69. 69.

    Raymond, D. J. A new model of the Madden–Julian oscillation. J. Atmos. Sci. 58, 2807–2819 (2001).

    Article  Google Scholar 

  70. 70.

    Sobel, A. H. & Maloney, E. D. An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci. 69, 1691–1705 (2012).

    Article  Google Scholar 

  71. 71.

    Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–228 (2002).

    CAS  Article  Google Scholar 

  72. 72.

    Deser, C. & Phillips, A. S. Atmospheric circulation trends, 1950–2000: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Clim. 22, 396–413 (2009).

    Article  Google Scholar 

  73. 73.

    Bony, S. et al. Thermodynamic control of anvil-cloud amount. Proc. Natl Acad. Sci. USA 113, 8927–8932 (2016).

    CAS  Article  Google Scholar 

Download references


We thank H. Liu and the Lamont-Doherty Earth Observatory for providing the CMIP5 data, and the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP. E.D.M. and H.X.B. were supported by the National Science Foundation under grant no. AGS-1441916, and the NOAA MAPP program under grant nos NA15OAR4310098 and NA15OAR4310099.

Author information




H.X.B. generated Figs. 1–4, and contributed to the writing and editing of the manuscript. A.F.A. contributed to the writing and editing of the manuscript, and generated Fig. 5. E.D.M. led the organization and drafting of the manuscript.

Corresponding author

Correspondence to Eric D. Maloney.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maloney, E.D., Adames, Á.F. & Bui, H.X. Madden–Julian oscillation changes under anthropogenic warming. Nature Clim Change 9, 26–33 (2019).

Download citation

Further reading