Perspective | Published:

Antarctic surface hydrology and impacts on ice-sheet mass balance


Melting is pervasive along the ice surrounding Antarctica. On the surface of the grounded ice sheet and floating ice shelves, extensive networks of lakes, streams and rivers both store and transport water. As melting increases with a warming climate, the surface hydrology of Antarctica in some regions could resemble Greenland’s present-day ablation and percolation zones. Drawing on observations of widespread surface water in Antarctica and decades of study in Greenland, we consider three modes by which meltwater could impact Antarctic mass balance: increased runoff, meltwater injection to the bed and meltwater-induced ice-shelf fracture — all of which may contribute to future ice-sheet mass loss from Antarctica.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Bell, R. E. et al. Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature 544, 344–348 (2017). Presents evidence of persistent removal of surface meltwater from an ice shelf by a surface river and the potential to develop surface drainage on Antarctica’s large ice shelves.

  2. 2.

    Zwally, H. J. & Fiegles, S. Extent and duration of Antarctic surface melting. J. Glaciol. 40, 463–475 (1994).

  3. 3.

    Liu, H., Wang, L. & Jezek, K. C. Spatiotemporal variations of snowmelt in Antarctica derived from satellite scanning multichannel microwave radiometer and Special Sensor Microwave Imager data (1978–2004). J. Geophys. Res. Earth Surf. 111, F01003 (2006).

  4. 4.

    Tedesco, M., Abdalati, W. & Zwally, H. J. Persistent surface snowmelt over Antarctica (1987–2006) from 19.35 GHz brightness temperatures. Geophys. Res. Lett. 34, L18504 (2007).

  5. 5.

    Trusel, L. D., Frey, K. E. & Das, S. B. Antarctic surface melting dynamics: enhanced perspectives from radar scatterometer data. J. Geophys. Res. Earth Surf. 117, F02023 (2012).

  6. 6.

    Munneke, P. K., Ligtenberg, S. R. M., Van den Broeke, M. R. & Vaughan, D. G. Firn air depletion as a precursor of Antarctic ice-shelf collapse. J. Glaciol. 60, 205–214 (2014).

  7. 7.

    Trusel, L. D., Frey, K. E., Das, S. B., Munneke, P. K. & Broeke, M. R. Satellite‐based estimates of Antarctic surface meltwater fluxes. Geophys. Res. Lett. 40, 6148–6153 (2013).

  8. 8.

    Lenaerts, J. T. M. et al. Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf. Nat. Clim. Change 7, 58–62 (2017).

  9. 9.

    Nicolas, J. P. et al. January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nat. Commun. 8, 15799 (2017).

  10. 10.

    Nghiem, S. et al. The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett. 39, L20502 (2012).

  11. 11.

    Glasser, N. F. et al. Surface structure and stability of the Larsen C ice shelf, Antarctic Peninsula. J. Glaciol. 55, 400–410 (2009).

  12. 12.

    Langley, E. S., Leeson, A. A., Stokes, C. R. & Jamieson, S. S. R. Seasonal evolution of supraglacial lakes on an East Antarctic outlet glacier. Geophys. Res. Lett. 43, 8563–8571 (2016). One of the earliest detailed multiyear analyses of surpraglacial pond formation and drainage in East Antarctica, suggesting three ways in which lakes evolve: refreeze, drainage englacially or drain supraglacially.

  13. 13.

    Phillips, H. A. Surface meltstreams on the Amery Ice Shelf, East Antarctica. Ann. Glaciol. 27, 177–181 (1998).

  14. 14.

    Kingslake, J., Ely, J. C., Das, I. & Bell, R. E. Widespread movement of meltwater onto and across Antarctic ice shelves. Nature 544, 349–352 (2017).Presents satellite evidence for widespread meltwater ponds, streams and rivers on the flanks of Antarctic Ice Sheets and surrounding ice shelves, suggesting that active surface hydrology is more common today than previously thought.

  15. 15.

    Bindschadler, R., Scambos, T. A., Rott, H., Skvarca, P. & Vornberger, P. Ice dolines on Larsen Ice Shelf, Antarctica. Ann. Glaciol. 34, 283–290 (2002).

  16. 16.

    Humphrey, N. F., Harper, J. T. & Pfeffer, W. T. Thermal tracking of meltwater retention in Greenland’s accumulation area. J. Geophys. Res. Earth Surf. 117, F01010 (2012).

  17. 17.

    Polashenski, C. et al. Observations of pronounced Greenland ice sheet firn warming and implications for runoff production. Geophys. Res. Lett. 41, 4238–4246 (2014).

  18. 18.

    Munneke, P. K. et al. Intense winter surface melt on an Antarctic ice shelf. Geophys. Res. Lett. 45, 7615–7623 (2018).

  19. 19.

    Glasser, N. F. & Scambos, T. A. A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse. J. Glaciol. 54, 3–16 (2008).

  20. 20.

    Banwell, A. F. et al. Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: a comparative study. Ann. Glaciol. 55, 1–8 (2014).

  21. 21.

    Liston, G. E., Winther, J.-G., Bruland, O., Elvehøy, H. & Sand, K. Below-surface ice melt on the coastal Antarctic ice sheet. J. Glaciol. 45, 273–285 (1999).

  22. 22.

    Liston, G. E. & Winther, J.-G. Antarctic surface and subsurface snow and ice melt fluxes. J. Clim. 18, 1469–1481 (2005).

  23. 23.

    Winther, J.-G., Elvehøy, H., Bøggild, C. E., Sand, K. & Liston, G. Melting, runoff and the formation of frozen lakes in a mixed snow and blue-ice field in Dronning Maud Land, Antarctica. J. Glaciol. 42, 271–278 (1996).

  24. 24.

    Echelmeyer, K., Clarke, T. S. & Harrison, W. D. Surficial glaciology of Jakobshavns Isbræ, West Greenland. Part I: surface morphology. J. Glaciol. 37, 368–382 (1991).

  25. 25.

    Miles, B. W. J., Stokes, C. R., Vieli, A. & Cox, N. J. Rapid, climate-driven changes in outlet glaciers on the Pacific coast of East Antarctica. Nature 500, 563–566 (2013).

  26. 26.

    McGrath, D. et al. Basal crevasses on the Larsen C Ice Shelf, Antarctica: implications for meltwater ponding and hydrofracture. Geophys. Res. Lett. 39, L16504 (2012).

  27. 27.

    Glasser, N. F. & Gudmundsson, G. H. Longitudinal surface structures (flowstripes) on Antarctic glaciers. Cryosphere 6, 383–391 (2012).

  28. 28.

    Dow, C. F. et al. Basal channels drive active surface hydrology and transverse ice shelf fracture. Sci. Adv. 4, eaao7212 (2018).

  29. 29.

    Bevan, S. L. et al. Centuries of intense surface melt on Larsen C Ice Shelf. Cryosphere 11, 2743 (2017).Using observations from five 90-m-deep boreholes and results from a flow-line model and a firn densification model, this study shows that stacked layers of re-frozen pond ice correspond to two climatic warm periods within the last 300 years on the Antarctic Peninsula.

  30. 30.

    Tedesco, M. et al. Measurement and modeling of ablation of the bottom of supraglacial lakes in western Greenland. Geophys. Res. Lett. 39, L02502 (2012).

  31. 31.

    Lüthje, M., Pedersen, L. T., Reeh, N. & Greuell, W. Modelling the evolution of supraglacial lakes on the West Greenland ice-sheet margin. J. Glaciol. 52, 608–618 (2006).

  32. 32.

    MacAyeal, D. R., Sergienko, O. V. & Banwell, A. F. A model of viscoelastic ice-shelf flexure. J. Glaciol. 61, 635–645 (2015).

  33. 33.

    Banwell, A. F. & Macayeal, D. R. Ice-shelf fracture due to viscoelastic flexure stress induced by fill/drain cycles of supraglacial lakes. Antarct. Sci. 27, 587–597 (2015).

  34. 34.

    Fricker, H. A. et al. Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using InSAR, MODIS and ICESat. Antarct. Sci. 21, 515–532 (2009).

  35. 35.

    Scambos, T. et al. Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth Planet. Sci. Lett. 280, 51–60 (2009).

  36. 36.

    Scambos, T. A., Hulbe, C., Fahnestock, M. & Bohlander, J. The link between climate warming and breakup of ice shelves in the Antarctic Peninsula.J. Glaciol. 46, 516–530 (2000). Outlines concept that crevasse propagation by meltwater is a key mechanism that contributes to the break up of Antarctic Pennisula ice shelves.

  37. 37.

    Macdonald, G. J., Banwell, A. F. & MacAyeal, D. R. Seasonal evolution of supraglacial lakes on a floating ice tongue, Petermann Glacier, Greenland. Ann. Glaciol. 59, 56–65 (2018).

  38. 38.

    Das, S. B. et al. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science 320, 778–781 (2008).

  39. 39.

    Tedesco, M. et al. Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet. Environ. Res. Lett. 8, 034007 (2013).

  40. 40.

    Paige, R. A. Sub-surface melt pools in the McMurdo Ice Shelf, Antarctica. J. Glaciol. 7, 511–516 (1968).

  41. 41.

    Miles, K. E., Willis, I. C., Benedek, C. L., Williamson, A. G. & Tedesco, M. Toward monitoring surface and subsurface lakes on the Greenland ice sheet using Sentinel-1 SAR and Landsat-8 OLI imagery. Front. Earth Sci. 5, 58 (2017).

  42. 42.

    Hubbard, B. et al. Massive subsurface ice formed by refreezing of ice-shelf melt ponds. Nat. Commun. 7, 11897 (2016).

  43. 43.

    Koenig, L. S. et al. Wintertime storage of water in buried supraglacial lakes across the Greenland Ice Sheet. Cryosphere 9, 1333–1342 (2015).

  44. 44.

    Forster, R. R. et al. Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nat. Geosci. 7, 95–98 (2014).

  45. 45.

    Munneke, P. K., M Ligtenberg, S. R., Broeke, M. R., Angelen, J. H. & Forster, R. R. Explaining the presence of perennial liquid water bodies in the firn of the Greenland Ice Sheet. Geophys. Res. Lett. 41, 476–483 (2014).

  46. 46.

    Miège, C. et al. Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars. J. Geophys. Res. Earth Surf. 121, 2381–2398 (2016).

  47. 47.

    Poinar, K. et al. Drainage of Southeast Greenland firn aquifer water through crevasses to the bed. Front. Earth Sci. 5, 5 (2017).

  48. 48.

    Miller, O. L. et al. Hydraulic conductivity of a firn aquifer in southeast Greenland. Front. Earth Sci. 5, 38 (2017).

  49. 49.

    Noël, B. et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2–Part 1: Greenland (1958–2016). Cryosphere 12, 811–831 (2018).

  50. 50.

    Kingslake, J. & Sole, A. Modelling channelized surface drainage of supraglacial lakes. J. Glaciol. 61, 185–199 (2015).

  51. 51.

    Turner, J. Significant warming of the Antarctic winter troposphere. Science 311, 1914–1917 (2006).

  52. 52.

    Scambos, T., Hulbe, C. & Fahnestock, M. in Antarctic Peninsula Climate Variability: A Historical and Paleoenvironmental Perspective (eds Domack, E. W. et al.) 79–92 (Antarctic Research Series 79, American Geophysical Union, Washington DC, 2003).

  53. 53.

    Vaughan, D. G. & Doake, C. S. M. Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379, 328–331 (1996).

  54. 54.

    Pritchard, H. D. & Vaughan, D. G. Widespread acceleration of tidewater glaciers on the Antarctic Peninsula. J. Geophys. Res. Earth Surf. 112, F03S29 (2007).

  55. 55.

    Abram, N. J. et al. Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nat. Geosci. 6, 404–411 (2013).

  56. 56.

    Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).

  57. 57.

    Thompson, D. W. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

  58. 58.

    Tedesco, M. & Monaghan, A. J. An updated Antarctic melt record through 2009 and its linkages to high‐latitude and tropical climate variability. Geophys. Res. Lett. 36, L18502 (2009).

  59. 59.

    Deb, P. et al. Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett. 45, 4124–4133 (2018).

  60. 60.

    Nicolas, J. P. & Bromwich, D. H. Climate of West Antarctica and influence of marine air intrusions. J. Clim. 24, 49–67 (2011).

  61. 61.

    Winther, J.-G., Jespersen, M. N. & Liston, G. E. Blue-ice areas in Antarctica derived from NOAA AVHRR satellite data. J. Glaciol. 47, 325–334 (2001).

  62. 62.

    Hui, F. et al. Mapping blue-ice areas in Antarctica using ETM+ and MODIS data. Ann. Glaciol. 55, 129–137 (2014).

  63. 63.

    Luckman, A. et al. Surface melt and ponding on Larsen C Ice Shelf and the impact of foehn winds. Antarct. Sci. 26, 625–635 (2014).

  64. 64.

    Turton, J. V., Kirchgaessner, A., Ross, A. N. & King, J. C. Does high‐resolution modelling improve the spatial analysis of föhn flow over the Larsen C Ice Shelf? Weather 72, 192–196 (2017).

  65. 65.

    Barrett, J. E. et al. Persistent effects of a discrete warming event on a polar desert ecosystem. Glob. Change Biol. 14, 2249–2261 (2008).

  66. 66.

    Speirs, J. C., Steinhoff, D. F., McGowan, H. A., Bromwich, D. H. & Monaghan, A. J. Foehn winds in the McMurdo Dry Valleys, Antarctica: the origin of extreme warming events. J. Clim. 23, 3577–3598 (2010).

  67. 67.

    Stern, A. A., Dinniman, M. S., Zagorodnov, V., Tyler, S. W. & Holland, D. M. Intrusion of warm surface water beneath the McMurdo ice shelf, Antarctica. J. Geophys. Res. Oceans 118, 7036–7048 (2013).

  68. 68.

    van der Veen, C. J. Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers. Geophys. Res. Lett. 34, L01501 (2007).

  69. 69.

    Cape, M. R. et al. Foehn winds link climate‐driven warming to ice shelf evolution in Antarctica. J. Geophys. Res. Atmos. 120, 11037–11057 (2015).

  70. 70.

    Straneo, F. et al. Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci. 4, 322–327 (2011).

  71. 71.

    Fried, M. J. et al. Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett. 42, 9328–9336 (2015).

  72. 72.

    Bartholomew, I. et al. Supraglacial forcing of subglacial drainage in the ablation zone of the Greenland ice sheet. Geophys. Res. Lett. 38, L08502 (2011).

  73. 73.

    Hoffman, M., Catania, G., Neumann, T., Andrews, L. & Rumrill, J. Links between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 116, F04035 (2011).

  74. 74.

    Banwell, A. F., MacAyeal, D. R. & Sergienko, O. V. Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophys. Res. Lett. 40, 5872–5876 (2013).Shows that a surface lake drainage event on an ice shelf may produce fractures that intersect other lakes, initiating the self-stimulating lake drainage mechanism that the authors propose may have contributed to the widespread break-up of the Larsen B Ice Shelf in 2002.

  75. 75.

    van den Broeke, M. et al. Partitioning recent Greenland mass loss. Science 326, 984–986 (2009).

  76. 76.

    Enderlin, E. M. et al. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 41, 866–872 (2014).

  77. 77.

    Csatho, B. M. et al. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics. Proc. Natl Acad. Sci. USA 111, 18478–18483 (2014).

  78. 78.

    Cooper, M. G. et al. Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone. Cryosphere 12, 955–970 (2018).

  79. 79.

    Willis, M. J., Herried, B. G., Bevis, M. G. & Bell, R. E. Recharge of a subglacial lake by surface meltwater in northeast Greenland. Nature 518, 223–227 (2015).

  80. 80.

    Smith, L. C. et al. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet. Proc. Natl Acad. Sci. USA 112, 1001–1006 (2015).

  81. 81.

    Stevens, L. A. et al. Greenland supraglacial lake drainages triggered by hydrologically induced basal slip. Nature 522, 73–76 (2015).

  82. 82.

    Joughin, I. Seasonal speedup along the western flank of the Greenland Ice Sheet. Science 320, 781–783 (2008).

  83. 83.

    Sundal, A. V. et al. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 469, 521–524 (2011).

  84. 84.

    Tedstone, A. J. et al. Greenland ice sheet motion insensitive to exceptional meltwater forcing. Proc. Natl Acad. Sci. USA 110, 19719–19724 (2013).

  85. 85.

    Hoffman, M. J. et al. Widespread moulin formation during supraglacial lake drainages in Greenland. Geophys. Res. Lett. 45, 778–788 (2018).

  86. 86.

    Banwell, A., Hewitt, I., Willis, I. & Arnold, N. Moulin density controls drainage development beneath the Greenland ice sheet. J. Geophys. Res. Earth Surf. 121, 2248–2269 (2016).

  87. 87.

    Van der Veen, C. J. Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold Reg. Sci. Technol. 27, 31–47 (1998).

  88. 88.

    MacAyeal, D. R. & Sergienko, O. V. The flexural dynamics of melting ice shelves. Ann. Glaciol. 54, 1–10 (2013).

  89. 89.

    Burton, J. C. et al. Laboratory investigations of iceberg capsize dynamics, energy dissipation and tsunamigenesis. J. Geophys. Res. Earth Surf. 117, F01007 (2012).

  90. 90.

    MacAyeal, D. R., Scambos, T. A., Hulbe, C. L. & Fahnestock, M. A. Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism. J. Glaciol. 49, 22–36 (2003).

  91. 91.

    Banwell, A. Glaciology: ice-shelf stability questioned. Nature 544, 306–307 (2017).

  92. 92.

    Beltaos, S. Collapse of floating ice covers under vertical loads: test data vs. theory. Cold Reg. Sci. Technol. 34, 191–207 (2002).

  93. 93.

    Hambrey, M. J. et al. Structure and sedimentology of George VI Ice Shelf, Antarctic Peninsula: implications for ice-sheet dynamics and landform development. J. Geol. Soc. 172, 599–613 (2015).

  94. 94.

    Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015). Shows that surface melting in Antarctica grows exponentially in response to a warming atmosphere, and that by 2100 under a high-emissions scenario, multiple ice shelves exceed levels of melt associated with previous ice-shelf collapses.

  95. 95.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016). Includes new parameterizations for ice-shelf hydrofracture and ice-cliff failure in an ice sheet–climate model, suggesting that atmospheric warming may drive Antarctic mass losses, both in previous warm periods and in the twenty-first century and beyond.

  96. 96.

    Thomas, E. R., Marshall, G. J. & McConnell, J. R. A doubling in snow accumulation in the western Antarctic Peninsula since 1850. Geophys. Res. Lett. 35, L01706 (2008).

  97. 97.

    Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

  98. 98.

    Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).

  99. 99.

    Lenaerts, J. T. M., Vizcaino, M., Fyke, J., Van Kampenhout, L. & van den Broeke, M. R. Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model. Clim. Dynam. 47, 1367–1381 (2016). Shows that surface melting is enhanced near the grounding zone of at least one East Antarctic ice shelf due to positive wind–albedo–melt feedbacks, suggesting the potential for ice-shelf hydrofracture beyond the Antarctic Peninsula.

  100. 100.

    Fettweis, X. et al. Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 11, 1015 (2017).

Download references


A.F.B. acknowledges support from a Leverhulme/Newton Trust Early Career Fellowship (grant no. ECF-2014-412). We thank X. Fettweis for producing and making Greenland MAR model output available and M. Tedesco for discussion on their usage. The authors thank O. Sergienko for useful discussions. The authors acknowledge the participants in the February 2018 NSF-funded workshop on Antarctic Surface Hydrology and Future Ice Shelf Stability (grant no. 1743326) for their lively, thoughtful discussion. L.D.T. acknowledges support from NSF Antarctic Glaciology Program award no. 1643733.

Author information

R.E.B. conceived the idea, and all authors contributed equally to the writing.

Competing interests

The authors declare no competing interests.

Correspondence to Robin E. Bell.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Examples of major components of surface hydrological systems located on a present-day Antarctic surface melt map.
Fig. 2: Antarctic surface hydrology.
Fig. 3: Schematic illustration of three primary modes of surface melt impact on ice-sheet mass balance.
Fig. 4: Surface meltwater production in Greenland today and Antarctica at the end of the century.