Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Antarctic surface hydrology and impacts on ice-sheet mass balance

Abstract

Melting is pervasive along the ice surrounding Antarctica. On the surface of the grounded ice sheet and floating ice shelves, extensive networks of lakes, streams and rivers both store and transport water. As melting increases with a warming climate, the surface hydrology of Antarctica in some regions could resemble Greenland’s present-day ablation and percolation zones. Drawing on observations of widespread surface water in Antarctica and decades of study in Greenland, we consider three modes by which meltwater could impact Antarctic mass balance: increased runoff, meltwater injection to the bed and meltwater-induced ice-shelf fracture — all of which may contribute to future ice-sheet mass loss from Antarctica.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of major components of surface hydrological systems located on a present-day Antarctic surface melt map.
Fig. 2: Antarctic surface hydrology.
Fig. 3: Schematic illustration of three primary modes of surface melt impact on ice-sheet mass balance.
Fig. 4: Surface meltwater production in Greenland today and Antarctica at the end of the century.

References

  1. Bell, R. E. et al. Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature 544, 344–348 (2017). Presents evidence of persistent removal of surface meltwater from an ice shelf by a surface river and the potential to develop surface drainage on Antarctica’s large ice shelves.

    Article  CAS  Google Scholar 

  2. Zwally, H. J. & Fiegles, S. Extent and duration of Antarctic surface melting. J. Glaciol. 40, 463–475 (1994).

    Article  Google Scholar 

  3. Liu, H., Wang, L. & Jezek, K. C. Spatiotemporal variations of snowmelt in Antarctica derived from satellite scanning multichannel microwave radiometer and Special Sensor Microwave Imager data (1978–2004). J. Geophys. Res. Earth Surf. 111, F01003 (2006).

    Article  Google Scholar 

  4. Tedesco, M., Abdalati, W. & Zwally, H. J. Persistent surface snowmelt over Antarctica (1987–2006) from 19.35 GHz brightness temperatures. Geophys. Res. Lett. 34, L18504 (2007).

    Article  Google Scholar 

  5. Trusel, L. D., Frey, K. E. & Das, S. B. Antarctic surface melting dynamics: enhanced perspectives from radar scatterometer data. J. Geophys. Res. Earth Surf. 117, F02023 (2012).

    Article  Google Scholar 

  6. Munneke, P. K., Ligtenberg, S. R. M., Van den Broeke, M. R. & Vaughan, D. G. Firn air depletion as a precursor of Antarctic ice-shelf collapse. J. Glaciol. 60, 205–214 (2014).

    Article  Google Scholar 

  7. Trusel, L. D., Frey, K. E., Das, S. B., Munneke, P. K. & Broeke, M. R. Satellite‐based estimates of Antarctic surface meltwater fluxes. Geophys. Res. Lett. 40, 6148–6153 (2013).

    Article  Google Scholar 

  8. Lenaerts, J. T. M. et al. Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf. Nat. Clim. Change 7, 58–62 (2017).

    Article  Google Scholar 

  9. Nicolas, J. P. et al. January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nat. Commun. 8, 15799 (2017).

    Article  CAS  Google Scholar 

  10. Nghiem, S. et al. The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett. 39, L20502 (2012).

    Article  Google Scholar 

  11. Glasser, N. F. et al. Surface structure and stability of the Larsen C ice shelf, Antarctic Peninsula. J. Glaciol. 55, 400–410 (2009).

    Article  Google Scholar 

  12. Langley, E. S., Leeson, A. A., Stokes, C. R. & Jamieson, S. S. R. Seasonal evolution of supraglacial lakes on an East Antarctic outlet glacier. Geophys. Res. Lett. 43, 8563–8571 (2016). One of the earliest detailed multiyear analyses of surpraglacial pond formation and drainage in East Antarctica, suggesting three ways in which lakes evolve: refreeze, drainage englacially or drain supraglacially.

    Article  Google Scholar 

  13. Phillips, H. A. Surface meltstreams on the Amery Ice Shelf, East Antarctica. Ann. Glaciol. 27, 177–181 (1998).

    Article  Google Scholar 

  14. Kingslake, J., Ely, J. C., Das, I. & Bell, R. E. Widespread movement of meltwater onto and across Antarctic ice shelves. Nature 544, 349–352 (2017).Presents satellite evidence for widespread meltwater ponds, streams and rivers on the flanks of Antarctic Ice Sheets and surrounding ice shelves, suggesting that active surface hydrology is more common today than previously thought.

    Article  CAS  Google Scholar 

  15. Bindschadler, R., Scambos, T. A., Rott, H., Skvarca, P. & Vornberger, P. Ice dolines on Larsen Ice Shelf, Antarctica. Ann. Glaciol. 34, 283–290 (2002).

    Article  Google Scholar 

  16. Humphrey, N. F., Harper, J. T. & Pfeffer, W. T. Thermal tracking of meltwater retention in Greenland’s accumulation area. J. Geophys. Res. Earth Surf. 117, F01010 (2012).

    Article  Google Scholar 

  17. Polashenski, C. et al. Observations of pronounced Greenland ice sheet firn warming and implications for runoff production. Geophys. Res. Lett. 41, 4238–4246 (2014).

    Article  CAS  Google Scholar 

  18. Munneke, P. K. et al. Intense winter surface melt on an Antarctic ice shelf. Geophys. Res. Lett. 45, 7615–7623 (2018).

    Article  Google Scholar 

  19. Glasser, N. F. & Scambos, T. A. A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse. J. Glaciol. 54, 3–16 (2008).

    Article  Google Scholar 

  20. Banwell, A. F. et al. Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: a comparative study. Ann. Glaciol. 55, 1–8 (2014).

    Article  Google Scholar 

  21. Liston, G. E., Winther, J.-G., Bruland, O., Elvehøy, H. & Sand, K. Below-surface ice melt on the coastal Antarctic ice sheet. J. Glaciol. 45, 273–285 (1999).

    Article  Google Scholar 

  22. Liston, G. E. & Winther, J.-G. Antarctic surface and subsurface snow and ice melt fluxes. J. Clim. 18, 1469–1481 (2005).

    Article  Google Scholar 

  23. Winther, J.-G., Elvehøy, H., Bøggild, C. E., Sand, K. & Liston, G. Melting, runoff and the formation of frozen lakes in a mixed snow and blue-ice field in Dronning Maud Land, Antarctica. J. Glaciol. 42, 271–278 (1996).

    Article  CAS  Google Scholar 

  24. Echelmeyer, K., Clarke, T. S. & Harrison, W. D. Surficial glaciology of Jakobshavns Isbræ, West Greenland. Part I: surface morphology. J. Glaciol. 37, 368–382 (1991).

    Article  Google Scholar 

  25. Miles, B. W. J., Stokes, C. R., Vieli, A. & Cox, N. J. Rapid, climate-driven changes in outlet glaciers on the Pacific coast of East Antarctica. Nature 500, 563–566 (2013).

    Article  CAS  Google Scholar 

  26. McGrath, D. et al. Basal crevasses on the Larsen C Ice Shelf, Antarctica: implications for meltwater ponding and hydrofracture. Geophys. Res. Lett. 39, L16504 (2012).

    Google Scholar 

  27. Glasser, N. F. & Gudmundsson, G. H. Longitudinal surface structures (flowstripes) on Antarctic glaciers. Cryosphere 6, 383–391 (2012).

    Article  Google Scholar 

  28. Dow, C. F. et al. Basal channels drive active surface hydrology and transverse ice shelf fracture. Sci. Adv. 4, eaao7212 (2018).

    Article  Google Scholar 

  29. Bevan, S. L. et al. Centuries of intense surface melt on Larsen C Ice Shelf. Cryosphere 11, 2743 (2017).Using observations from five 90-m-deep boreholes and results from a flow-line model and a firn densification model, this study shows that stacked layers of re-frozen pond ice correspond to two climatic warm periods within the last 300 years on the Antarctic Peninsula.

    Article  Google Scholar 

  30. Tedesco, M. et al. Measurement and modeling of ablation of the bottom of supraglacial lakes in western Greenland. Geophys. Res. Lett. 39, L02502 (2012).

    Article  Google Scholar 

  31. Lüthje, M., Pedersen, L. T., Reeh, N. & Greuell, W. Modelling the evolution of supraglacial lakes on the West Greenland ice-sheet margin. J. Glaciol. 52, 608–618 (2006).

    Article  Google Scholar 

  32. MacAyeal, D. R., Sergienko, O. V. & Banwell, A. F. A model of viscoelastic ice-shelf flexure. J. Glaciol. 61, 635–645 (2015).

    Article  Google Scholar 

  33. Banwell, A. F. & Macayeal, D. R. Ice-shelf fracture due to viscoelastic flexure stress induced by fill/drain cycles of supraglacial lakes. Antarct. Sci. 27, 587–597 (2015).

    Article  Google Scholar 

  34. Fricker, H. A. et al. Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using InSAR, MODIS and ICESat. Antarct. Sci. 21, 515–532 (2009).

    Article  Google Scholar 

  35. Scambos, T. et al. Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth Planet. Sci. Lett. 280, 51–60 (2009).

    Article  CAS  Google Scholar 

  36. Scambos, T. A., Hulbe, C., Fahnestock, M. & Bohlander, J. The link between climate warming and breakup of ice shelves in the Antarctic Peninsula.J. Glaciol. 46, 516–530 (2000). Outlines concept that crevasse propagation by meltwater is a key mechanism that contributes to the break up of Antarctic Pennisula ice shelves.

    Article  Google Scholar 

  37. Macdonald, G. J., Banwell, A. F. & MacAyeal, D. R. Seasonal evolution of supraglacial lakes on a floating ice tongue, Petermann Glacier, Greenland. Ann. Glaciol. 59, 56–65 (2018).

    Article  Google Scholar 

  38. Das, S. B. et al. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science 320, 778–781 (2008).

    Article  CAS  Google Scholar 

  39. Tedesco, M. et al. Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet. Environ. Res. Lett. 8, 034007 (2013).

    Article  Google Scholar 

  40. Paige, R. A. Sub-surface melt pools in the McMurdo Ice Shelf, Antarctica. J. Glaciol. 7, 511–516 (1968).

    Article  Google Scholar 

  41. Miles, K. E., Willis, I. C., Benedek, C. L., Williamson, A. G. & Tedesco, M. Toward monitoring surface and subsurface lakes on the Greenland ice sheet using Sentinel-1 SAR and Landsat-8 OLI imagery. Front. Earth Sci. 5, 58 (2017).

    Article  Google Scholar 

  42. Hubbard, B. et al. Massive subsurface ice formed by refreezing of ice-shelf melt ponds. Nat. Commun. 7, 11897 (2016).

    Article  CAS  Google Scholar 

  43. Koenig, L. S. et al. Wintertime storage of water in buried supraglacial lakes across the Greenland Ice Sheet. Cryosphere 9, 1333–1342 (2015).

    Article  Google Scholar 

  44. Forster, R. R. et al. Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nat. Geosci. 7, 95–98 (2014).

    Article  CAS  Google Scholar 

  45. Munneke, P. K., M Ligtenberg, S. R., Broeke, M. R., Angelen, J. H. & Forster, R. R. Explaining the presence of perennial liquid water bodies in the firn of the Greenland Ice Sheet. Geophys. Res. Lett. 41, 476–483 (2014).

    Article  Google Scholar 

  46. Miège, C. et al. Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars. J. Geophys. Res. Earth Surf. 121, 2381–2398 (2016).

    Article  Google Scholar 

  47. Poinar, K. et al. Drainage of Southeast Greenland firn aquifer water through crevasses to the bed. Front. Earth Sci. 5, 5 (2017).

    Article  Google Scholar 

  48. Miller, O. L. et al. Hydraulic conductivity of a firn aquifer in southeast Greenland. Front. Earth Sci. 5, 38 (2017).

    Article  Google Scholar 

  49. Noël, B. et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2–Part 1: Greenland (1958–2016). Cryosphere 12, 811–831 (2018).

    Article  Google Scholar 

  50. Kingslake, J. & Sole, A. Modelling channelized surface drainage of supraglacial lakes. J. Glaciol. 61, 185–199 (2015).

    Article  Google Scholar 

  51. Turner, J. Significant warming of the Antarctic winter troposphere. Science 311, 1914–1917 (2006).

    Article  CAS  Google Scholar 

  52. Scambos, T., Hulbe, C. & Fahnestock, M. in Antarctic Peninsula Climate Variability: A Historical and Paleoenvironmental Perspective (eds Domack, E. W. et al.) 79–92 (Antarctic Research Series 79, American Geophysical Union, Washington DC, 2003).

  53. Vaughan, D. G. & Doake, C. S. M. Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379, 328–331 (1996).

    Article  CAS  Google Scholar 

  54. Pritchard, H. D. & Vaughan, D. G. Widespread acceleration of tidewater glaciers on the Antarctic Peninsula. J. Geophys. Res. Earth Surf. 112, F03S29 (2007).

    Article  Google Scholar 

  55. Abram, N. J. et al. Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nat. Geosci. 6, 404–411 (2013).

    Article  CAS  Google Scholar 

  56. Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).

    Article  Google Scholar 

  57. Thompson, D. W. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

    Article  CAS  Google Scholar 

  58. Tedesco, M. & Monaghan, A. J. An updated Antarctic melt record through 2009 and its linkages to high‐latitude and tropical climate variability. Geophys. Res. Lett. 36, L18502 (2009).

    Article  Google Scholar 

  59. Deb, P. et al. Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett. 45, 4124–4133 (2018).

    Article  Google Scholar 

  60. Nicolas, J. P. & Bromwich, D. H. Climate of West Antarctica and influence of marine air intrusions. J. Clim. 24, 49–67 (2011).

    Article  Google Scholar 

  61. Winther, J.-G., Jespersen, M. N. & Liston, G. E. Blue-ice areas in Antarctica derived from NOAA AVHRR satellite data. J. Glaciol. 47, 325–334 (2001).

    Article  Google Scholar 

  62. Hui, F. et al. Mapping blue-ice areas in Antarctica using ETM+ and MODIS data. Ann. Glaciol. 55, 129–137 (2014).

    Article  Google Scholar 

  63. Luckman, A. et al. Surface melt and ponding on Larsen C Ice Shelf and the impact of foehn winds. Antarct. Sci. 26, 625–635 (2014).

    Article  Google Scholar 

  64. Turton, J. V., Kirchgaessner, A., Ross, A. N. & King, J. C. Does high‐resolution modelling improve the spatial analysis of föhn flow over the Larsen C Ice Shelf? Weather 72, 192–196 (2017).

    Article  Google Scholar 

  65. Barrett, J. E. et al. Persistent effects of a discrete warming event on a polar desert ecosystem. Glob. Change Biol. 14, 2249–2261 (2008).

    Article  Google Scholar 

  66. Speirs, J. C., Steinhoff, D. F., McGowan, H. A., Bromwich, D. H. & Monaghan, A. J. Foehn winds in the McMurdo Dry Valleys, Antarctica: the origin of extreme warming events. J. Clim. 23, 3577–3598 (2010).

    Article  Google Scholar 

  67. Stern, A. A., Dinniman, M. S., Zagorodnov, V., Tyler, S. W. & Holland, D. M. Intrusion of warm surface water beneath the McMurdo ice shelf, Antarctica. J. Geophys. Res. Oceans 118, 7036–7048 (2013).

    Article  Google Scholar 

  68. van der Veen, C. J. Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers. Geophys. Res. Lett. 34, L01501 (2007).

    Google Scholar 

  69. Cape, M. R. et al. Foehn winds link climate‐driven warming to ice shelf evolution in Antarctica. J. Geophys. Res. Atmos. 120, 11037–11057 (2015).

    Article  Google Scholar 

  70. Straneo, F. et al. Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci. 4, 322–327 (2011).

    Article  CAS  Google Scholar 

  71. Fried, M. J. et al. Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett. 42, 9328–9336 (2015).

    Article  Google Scholar 

  72. Bartholomew, I. et al. Supraglacial forcing of subglacial drainage in the ablation zone of the Greenland ice sheet. Geophys. Res. Lett. 38, L08502 (2011).

    Article  Google Scholar 

  73. Hoffman, M., Catania, G., Neumann, T., Andrews, L. & Rumrill, J. Links between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 116, F04035 (2011).

    Article  Google Scholar 

  74. Banwell, A. F., MacAyeal, D. R. & Sergienko, O. V. Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophys. Res. Lett. 40, 5872–5876 (2013).Shows that a surface lake drainage event on an ice shelf may produce fractures that intersect other lakes, initiating the self-stimulating lake drainage mechanism that the authors propose may have contributed to the widespread break-up of the Larsen B Ice Shelf in 2002.

    Article  Google Scholar 

  75. van den Broeke, M. et al. Partitioning recent Greenland mass loss. Science 326, 984–986 (2009).

    Article  CAS  Google Scholar 

  76. Enderlin, E. M. et al. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 41, 866–872 (2014).

    Article  Google Scholar 

  77. Csatho, B. M. et al. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics. Proc. Natl Acad. Sci. USA 111, 18478–18483 (2014).

    Article  CAS  Google Scholar 

  78. Cooper, M. G. et al. Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone. Cryosphere 12, 955–970 (2018).

    Article  Google Scholar 

  79. Willis, M. J., Herried, B. G., Bevis, M. G. & Bell, R. E. Recharge of a subglacial lake by surface meltwater in northeast Greenland. Nature 518, 223–227 (2015).

    Article  CAS  Google Scholar 

  80. Smith, L. C. et al. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet. Proc. Natl Acad. Sci. USA 112, 1001–1006 (2015).

    Article  CAS  Google Scholar 

  81. Stevens, L. A. et al. Greenland supraglacial lake drainages triggered by hydrologically induced basal slip. Nature 522, 73–76 (2015).

    Article  CAS  Google Scholar 

  82. Joughin, I. Seasonal speedup along the western flank of the Greenland Ice Sheet. Science 320, 781–783 (2008).

    Article  CAS  Google Scholar 

  83. Sundal, A. V. et al. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 469, 521–524 (2011).

    Article  CAS  Google Scholar 

  84. Tedstone, A. J. et al. Greenland ice sheet motion insensitive to exceptional meltwater forcing. Proc. Natl Acad. Sci. USA 110, 19719–19724 (2013).

    Article  CAS  Google Scholar 

  85. Hoffman, M. J. et al. Widespread moulin formation during supraglacial lake drainages in Greenland. Geophys. Res. Lett. 45, 778–788 (2018).

    Article  Google Scholar 

  86. Banwell, A., Hewitt, I., Willis, I. & Arnold, N. Moulin density controls drainage development beneath the Greenland ice sheet. J. Geophys. Res. Earth Surf. 121, 2248–2269 (2016).

    Article  Google Scholar 

  87. Van der Veen, C. J. Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold Reg. Sci. Technol. 27, 31–47 (1998).

    Article  Google Scholar 

  88. MacAyeal, D. R. & Sergienko, O. V. The flexural dynamics of melting ice shelves. Ann. Glaciol. 54, 1–10 (2013).

    Article  Google Scholar 

  89. Burton, J. C. et al. Laboratory investigations of iceberg capsize dynamics, energy dissipation and tsunamigenesis. J. Geophys. Res. Earth Surf. 117, F01007 (2012).

    Article  Google Scholar 

  90. MacAyeal, D. R., Scambos, T. A., Hulbe, C. L. & Fahnestock, M. A. Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism. J. Glaciol. 49, 22–36 (2003).

    Article  Google Scholar 

  91. Banwell, A. Glaciology: ice-shelf stability questioned. Nature 544, 306–307 (2017).

    Article  CAS  Google Scholar 

  92. Beltaos, S. Collapse of floating ice covers under vertical loads: test data vs. theory. Cold Reg. Sci. Technol. 34, 191–207 (2002).

    Article  Google Scholar 

  93. Hambrey, M. J. et al. Structure and sedimentology of George VI Ice Shelf, Antarctic Peninsula: implications for ice-sheet dynamics and landform development. J. Geol. Soc. 172, 599–613 (2015).

    Article  Google Scholar 

  94. Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015). Shows that surface melting in Antarctica grows exponentially in response to a warming atmosphere, and that by 2100 under a high-emissions scenario, multiple ice shelves exceed levels of melt associated with previous ice-shelf collapses.

    Article  CAS  Google Scholar 

  95. DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016). Includes new parameterizations for ice-shelf hydrofracture and ice-cliff failure in an ice sheet–climate model, suggesting that atmospheric warming may drive Antarctic mass losses, both in previous warm periods and in the twenty-first century and beyond.

    Article  CAS  Google Scholar 

  96. Thomas, E. R., Marshall, G. J. & McConnell, J. R. A doubling in snow accumulation in the western Antarctic Peninsula since 1850. Geophys. Res. Lett. 35, L01706 (2008).

    Article  Google Scholar 

  97. Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article  CAS  Google Scholar 

  98. Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).

    Article  CAS  Google Scholar 

  99. Lenaerts, J. T. M., Vizcaino, M., Fyke, J., Van Kampenhout, L. & van den Broeke, M. R. Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model. Clim. Dynam. 47, 1367–1381 (2016). Shows that surface melting is enhanced near the grounding zone of at least one East Antarctic ice shelf due to positive wind–albedo–melt feedbacks, suggesting the potential for ice-shelf hydrofracture beyond the Antarctic Peninsula.

    Article  Google Scholar 

  100. Fettweis, X. et al. Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 11, 1015 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

A.F.B. acknowledges support from a Leverhulme/Newton Trust Early Career Fellowship (grant no. ECF-2014-412). We thank X. Fettweis for producing and making Greenland MAR model output available and M. Tedesco for discussion on their usage. The authors thank O. Sergienko for useful discussions. The authors acknowledge the participants in the February 2018 NSF-funded workshop on Antarctic Surface Hydrology and Future Ice Shelf Stability (grant no. 1743326) for their lively, thoughtful discussion. L.D.T. acknowledges support from NSF Antarctic Glaciology Program award no. 1643733.

Author information

Authors and Affiliations

Authors

Contributions

R.E.B. conceived the idea, and all authors contributed equally to the writing.

Corresponding author

Correspondence to Robin E. Bell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, R.E., Banwell, A.F., Trusel, L.D. et al. Antarctic surface hydrology and impacts on ice-sheet mass balance. Nature Clim Change 8, 1044–1052 (2018). https://doi.org/10.1038/s41558-018-0326-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-018-0326-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing