Latitudinal shift of the Atlantic Meridional Overturning Circulation source regions under a warming climate


The strength of the Atlantic Meridional Overturning Circulation, a key indicator of the climate state, is maintained by the subduction of dense water that feeds the deep southwards branch. At present, this subduction occurs almost entirely in the subpolar region, in the Labrador, Irminger and Nordic seas; however, whether this will continue under climate change is unknown. Here we use a quantitative Lagrangian diagnostic applied to climate model output to show that, in response to warming, the main source regions of this mixed-layer subduction shift northwards to the Arctic Basin and southwards to the subtropical gyre. These shifts are explained by changes in background stratification, mixed-layer depth and ocean circulation, highlighting the need to consider the full three-dimensionality of the circulation and its changes to accurately predict the future climate state.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: AMOC strength at 26° N in CTRL and 4 × CO2.
Fig. 2: Regional contributions to the AMOC streamfunctions at 26° N.
Fig. 3: Changes in MLD and subduction rates.
Fig. 4: Changes in stratification and gyre circulation.
Fig. 5: Changes in the dominant source regions of the AMOC deep limb.

Data availability

The data sets generated and analysed during the current study are available upon request from the corresponding author.


  1. 1.

    Jackson, L. C. et al. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim. Dynam. 45, 3299–3316 (2015).

    Article  Google Scholar 

  2. 2.

    McCarthy, G. et al. Measuring the Atlantic meridional overturning circulation at 26º N. Prog. Oceanogr. 130, 91–111 (2015).

    Article  Google Scholar 

  3. 3.

    Mercier, H. et al. Variability of the meridional overturning circulation at the Greenland–Portugal OVIDE section from 1993 to 2010. Prog. Oceanogr. 132, 250–261 (2015).

    Article  Google Scholar 

  4. 4.

    Caesar, L., Rahmstorf, G. F. S., Robinson, A. & Saba, V. Observed finger-print of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  7. 7.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  8. 8.

    Schmittner, A., Latif, M. & Schneider, B. Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett. 32, L23710 (2005).

    Article  Google Scholar 

  9. 9.

    Cheng, W., Chiang, J. C. & Zhang, D. Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Clim. 26, 7187–7197 (2013).

    Article  Google Scholar 

  10. 10.

    Jahn, A. & Holland, M. M. Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4-CMIP5 simulations. Geophys. Res. Lett. 40, 1206–1211 (2013).

    Article  Google Scholar 

  11. 11.

    Buckley, M. W. & Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Rev. Geophys. 54, 5–63 (2016).

    Article  Google Scholar 

  12. 12.

    Pillar, H. R., Heimbach, P., Johnson, H. L. & Marshall, D. P. Dynamical attribution of recent variability in Atlantic overturning. J. Clim. 29, 3339–3352 (2016).

    Article  Google Scholar 

  13. 13.

    Polo, I., Robson, J., Sutton, R. & Balmaseda, M. A. The importance of wind and buoyancy forcing for the boundary density variations and the geostrophic component of the AMOC at 26°N. J. Phys. Oceanogr. 44, 2387–2408 (2014).

    Article  Google Scholar 

  14. 14.

    Medhaug, I., Langehaug, H. R., Eldevik, T., Furevik, T. & Bentsen, M. Mechanisms for decadal scale variability in a simulated Atlantic meridional overturning circulation. Clim. Dynam. 39, 77–93 (2012).

    Article  Google Scholar 

  15. 15.

    Deshayes, J. & Frankignoul, C. Simulated variability of the circulation in the North Atlantic from 1953 to 2003. J. Clim. 21, 4919 (2008).

    Article  Google Scholar 

  16. 16.

    Lohmann, K. et al. The role of subpolar deep water formation and Nordic Seas overflows in simulated multidecadal variability of the Atlantic meridional overturning circulation. Ocean Sci. 10, 227–241 (2014).

    Article  Google Scholar 

  17. 17.

    Moat, B. I., Josey, S. A. & Sinha, B. Impact of Barents Sea winter air–sea exchanges on Fram Strait dense water transport. J. Geophys. Res. 119, 1009–1021 (2014).

    Article  Google Scholar 

  18. 18.

    Thomas, M. D., Tréguier, A.-M., Blanke, B., Deshayes, J. & Voldoire, A. A Lagrangian method to isolate the impacts of mixed layer subduction on the meridional overturning circulation in a numerical model. J. Clim. 28, 7503–7517 (2015).

    Article  Google Scholar 

  19. 19.

    Lique, C., Johnson, H. L. & Plancherel, Y. Emergence of deep convection in the Arctic Ocean under a warming climate. Clim. Dynam. 50, 3849–3851 (2018).

    Article  Google Scholar 

  20. 20.

    Voldoire, A. et al. The CNRM-CM5. 1 global climate model: description and basic evaluation. Clim. Dynam. 40, 2091–2121 (2013).

    Article  Google Scholar 

  21. 21.

    MacGilchrist, G. A., Marshall, D. P., Johnson, H. L., Lique, C. & Thomas, M. Characterizing the chaotic nature of ocean ventilation. J. Geophys. Res. Oceans 122, 7577–7594 (2017).

    Article  Google Scholar 

  22. 22.

    Marzocchi, A. et al. The North Atlantic subpolar circulation in an eddy-resolving global ocean model. J. Mar. Syst. 142, 126–143 (2015).

    Article  Google Scholar 

  23. 23.

    Heuzé, C. North Atlantic deep water formation and AMOC in CMIP5 models. Ocean Sci. 13, 609–622 (2017).

    Article  Google Scholar 

  24. 24.

    Pickart, R. S. & Spall, M. A. Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J. Phys. Oceanogr. 37, 2207–2227 (2007).

    Article  Google Scholar 

  25. 25.

    Sarafanov, A. et al. Mean full-depth summer circulation and transports at the northern periphery of the Atlantic Ocean in the 2000s. J. Geophys. Res. Oceans 117, C01014 (2012).

  26. 26.

    Dickson, R. R. & Brown, J. The production of North Atlantic Deep Water: sources, rates, and pathways. J. Geophys. Res. Oceans 99, 12,319–12,341 (1994).

    Article  Google Scholar 

  27. 27.

    Schott, F. A., McCreary, J. P. & Johnson, G. C. in Earth’s Climate: The Ocean–Atmosphere Interaction (eds Wang, C. et al.) 261–304 (AGU, Washington DC, 2004).

  28. 28.

    Kostov, Y., Armour, K. C. & Marshall, J. Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophys. Res. Lett. 41, 2108–2116 (2014).

    Article  Google Scholar 

  29. 29.

    Williams, R. G., Marshall, J. C. & Spall, M. A. Does Stommel’s mixed layer “demon” work? J. Phys. Oceanogr. 25, 3089–3102 (1995).

    Article  Google Scholar 

  30. 30.

    Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. & Scott, J. D. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. Oceans 117, C04031 (2012).

    Article  Google Scholar 

  31. 31.

    Heuzé, C., Heywood, K. J., Stevens, D. P. & Ridley, J. K. Changes in global ocean bottom properties and volume transports in CMIP5 models under climate change scenarios. J. Clim. 28, 2917–2944 (2015).

    Article  Google Scholar 

  32. 32.

    Falina, A. et al. On the cascading of dense shelf waters in the Irminger Sea. J. Phys. Oceanogr. 42, 2254–2267 (2012).

    Article  Google Scholar 

  33. 33.

    Germe, A., Houssais, M.-N., Herbaut, C. & Cassou, C. Greenland Sea sea ice variability over 1979–2007 and its link to the surface atmosphere. J. Geophys. Res. Oceans 116, C10034 (2011).

    Article  Google Scholar 

  34. 34.

    Peralta-Ferriz, C. & Woodgate, R. A. Seasonal and interannual variability of pan-arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling. Prog. Oceanogr. 134, 19–53 (2015).

    Article  Google Scholar 

  35. 35.

    Kuhlbrodt, T., Titz, S., Feudel, U. & Rahmstorf, S. A simple model of seasonal open ocean convection. Ocean Dynam. 52, 36–49 (2001).

    Article  Google Scholar 

  36. 36.

    McCartney, M. S. & Talley, L. D. The subpolar mode water of the North Atlantic Ocean. J. Phys. Oceanogr. 12, 1169–1188 (1982).

    Article  Google Scholar 

  37. 37.

    Trossman, D. S., Thompson, L. A., Kelly, K. A. & Kwon, Y.-O. Estimates of North Atlantic ventilation and mode water formation for winters 2002–06. J. Phys. Oceanogr. 39, 2600–2617 (2009).

    Article  Google Scholar 

  38. 38.

    Thomas, M. D. & Fedorov, A. V. The eastern subtropical Pacific origin of the equatorial cold bias in climate models: a Lagrangian perspective. J. Clim. 30, 5885–5900 (2017).

    Article  Google Scholar 

  39. 39.

    Burkholder, K. C. & Lozier, M. S. Subtropical to subpolar pathways in the North Atlantic: deductions from Lagrangian trajectories. J. Geophys. Res. Oceans 116, C07017 (2011).

    Article  Google Scholar 

  40. 40.

    BrodeauL.. & Koenigk, T. Extinction of the northern oceanic deep convection in an ensemble of climate model simulations of the 20th and 21st centuries. Clim. Dynam. 46, 2863–2882 (2016).

    Article  Google Scholar 

  41. 41.

    Xu, L., Xie, S.-P. & Liu, Q. Mode water ventilation and subtropical countercurrent over the North Pacific in CMIP5 simulations and future projections. J. Geophys. Res. Oceans 117, C12009 (2012).

    Article  Google Scholar 

  42. 42.

    Lazier, J. The renewal of Labrador Sea water. Deep Sea Res. Oceanogr. Abstr. 20, 341–353 (1973).

    Article  Google Scholar 

  43. 43.

    Våge, K. et al. Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nat. Geosci. 2, 67–72 (2009).

    Article  Google Scholar 

  44. 44.

    Piron, A., Thierry, V., Mercier, H. & Caniaux, G. Argo float observations of basin-scale deep convection in the Irminger sea during winter 2011–2012. Deep Sea Res. I 109, 76–90 (2016).

    Article  Google Scholar 

  45. 45.

    Sévellec, F., Fedorov, A. V. & Liu, W. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 7, 604–610 (2017).

    Article  Google Scholar 

  46. 46.

    Yang, H. et al. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Oceans 121, 4928–4945 (2016).

    Article  Google Scholar 

  47. 47.

    Bakker, P. et al. Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting. Geophys. Res. Lett. 43, 12 (2016).

    Google Scholar 

  48. 48.

    Gillard, L. C., Hu, X., Myers, P. G. & Bamber, J. L. Meltwater pathways from marine terminating glaciers of the Greenland ice sheet. Geophys. Res. Lett. 43, 10 (2016).

    Article  Google Scholar 

  49. 49.

    Exarchou, E., Kuhlbrodt, T., Gregory, J. M. & Smith, R. S. Ocean heat uptake processes: a model intercomparison. J. Clim. 28, 887–908 (2015).

    Article  Google Scholar 

  50. 50.

    Pérez, F. F. et al. Atlantic Ocean CO2 uptake reduced by weakening of the meridional overturning circulation. Nat. Geosci. 6, 146–152 (2013).

    Article  Google Scholar 

  51. 51.

    Winton, M., Griffies, S. M., Samuels, B. L., Sarmiento, J. L. & Frölicher, T. L. Connecting changing ocean circulation with changing climate. J. Clim. 26, 2268–2278 (2013).

    Article  Google Scholar 

  52. 52.

    Hewitt, H. et al. Design and implementation of the infrastructure of HadGEM3: The next-generation Met Office climate modelling system. Geosci. Model Dev. 4, 223–253 (2011).

    Article  Google Scholar 

  53. 53.

    Madec, G. NEMO Ocean Engine, Note du Pôle Modélisation 27 (Institut Pierre-Simon Laplace, 2008).

  54. 54.

    Salas y Mélia, D. A global coupled sea ice–ocean model. Ocean Model. 4, 137–172 (2002).

    Article  Google Scholar 

  55. 55.

    Déqué, M., Dreveton, C., Braun, A. & Cariolle, D. The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim. Dyn. 10, 249–266 (1994).

    Article  Google Scholar 

  56. 56.

    Le Sommer, J., Penduff, T., Theetten, S., Madec, G. & Barnier, B. How momentum advection schemes influence current topography interactions at eddy permitting resolution. Ocean Model. 29, 1–14 (2009).

    Article  Google Scholar 

  57. 57.

    Gent, P. R. & McWilliams, J. C. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–160 (1990).

    Article  Google Scholar 

  58. 58.

    Blanke, B. & Delecluse, P. Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr. 23, 1363–1388 (1993).

    Article  Google Scholar 

  59. 59.

    Danabasoglu, G. et al. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Model. 73, 76–107 (2014).

    Article  Google Scholar 

  60. 60.

    Danabasoglu, G. et al. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Model. 97, 65–90 (2016).

    Article  Google Scholar 

  61. 61.

    Ilicak, M. et al. An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes. Ocean Model. 100, 141–161 (2016).

    Article  Google Scholar 

  62. 62.

    Wang, Q. et al. An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: Sea ice and solid freshwater. Ocean Model. 99, 110–132 (2016).

    Article  Google Scholar 

  63. 63.

    Wang, Q. et al. An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: Liquid freshwater. Ocean Model. 99, 86–109 (2016).

    Article  Google Scholar 

  64. 64.

    Blanke, B. & Raynaud, S. Kinematics of the Pacific Equatorial Undercurrent: an Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr. 27, 1038–1053 (1997).

    Article  Google Scholar 

  65. 65.

    Blanke, B., Arhan, M., Speich, S. & Pailler, K. Diagnosing and picturing the North Atlantic segment of the global conveyor belt by means of an ocean general circulation model. J. Phys. Oceanogr. 32, 1430–1451 (2002).

    Article  Google Scholar 

  66. 66.

    Holdsworth, A. M. & Myers, P. G. The influence of high-frequency atmospheric forcing on the circulation and deep convection of the Labrador Sea. J. Clim. 28, 4980–4996 (2015).

    Article  Google Scholar 

  67. 67.

    Van Sebille, E. et al. Lagrangian ocean analysis: Fundamentals and practices. Ocean Model. 121, 49–75 (2018).

  68. 68.

    Valdivieso Da Costa, M. & Blanke, B. Lagrangian methods for flow climatologies and trajectory error assessment. Ocean Model. 6, 335–358 (2004).

    Article  Google Scholar 

Download references


We are deeply grateful to A. Voldoire and R. Séférian (CNRM, Toulouse, France) for making the model outputs from the different simulations available, and providing guidance on their use.

Author information




C.L. and M.T. designed the study. M.T. performed the Lagrangian analysis. C.L. and M.T. analysed the results. C.L. wrote the manuscript with input from M.T.

Corresponding author

Correspondence to Camille Lique.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures 1–3, Supplementary references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lique, C., Thomas, M.D. Latitudinal shift of the Atlantic Meridional Overturning Circulation source regions under a warming climate. Nature Clim Change 8, 1013–1020 (2018).

Download citation

Further reading

  • Poleward Shift of the Major Ocean Gyres Detected in a Warming Climate

    • Hu Yang
    • , Gerrit Lohmann
    • , Uta Krebs‐Kanzow
    • , Monica Ionita
    • , Xiaoxu Shi
    • , Dimitry Sidorenko
    • , Xun Gong
    • , Xueen Chen
    •  & Evan J. Gowan

    Geophysical Research Letters (2020)

  • A recent decline in North Atlantic subtropical mode water formation

    • Samuel W. Stevens
    • , Rodney J. Johnson
    • , Guillaume Maze
    •  & Nicholas R. Bates

    Nature Climate Change (2020)

  • The Relationship Between U.S. East Coast Sea Level and the Atlantic Meridional Overturning Circulation: A Review

    • Christopher M. Little
    • , Aixue Hu
    • , Chris W. Hughes
    • , Gerard D. McCarthy
    • , Christopher G. Piecuch
    • , Rui M. Ponte
    •  & Matthew D. Thomas

    Journal of Geophysical Research: Oceans (2019)

  • Challenges and Prospects in Ocean Circulation Models

    • Baylor Fox-Kemper
    • , Alistair Adcroft
    • , Claus W. Böning
    • , Eric P. Chassignet
    • , Enrique Curchitser
    • , Gokhan Danabasoglu
    • , Carsten Eden
    • , Matthew H. England
    • , Rüdiger Gerdes
    • , Richard J. Greatbatch
    • , Stephen M. Griffies
    • , Robert W. Hallberg
    • , Emmanuel Hanert
    • , Patrick Heimbach
    • , Helene T. Hewitt
    • , Christopher N. Hill
    • , Yoshiki Komuro
    • , Sonya Legg
    • , Julien Le Sommer
    • , Simona Masina
    • , Simon J. Marsland
    • , Stephen G. Penny
    • , Fangli Qiao
    • , Todd D. Ringler
    • , Anne Marie Treguier
    • , Hiroyuki Tsujino
    • , Petteri Uotila
    •  & Stephen G. Yeager

    Frontiers in Marine Science (2019)

  • SKIM, a Candidate Satellite Mission Exploring Global Ocean Currents and Waves

    • Fabrice Ardhuin
    • , Peter Brandt
    • , Lucile Gaultier
    • , Craig Donlon
    • , Alessandro Battaglia
    • , François Boy
    • , Tania Casal
    • , Bertrand Chapron
    • , Fabrice Collard
    • , Sophie Cravatte
    • , Jean-Marc Delouis
    • , Erik De Witte
    • , Gerald Dibarboure
    • , Geir Engen
    • , Harald Johnsen
    • , Camille Lique
    • , Paco Lopez-Dekker
    • , Christophe Maes
    • , Adrien Martin
    • , Louis Marié
    • , Dimitris Menemenlis
    • , Frederic Nouguier
    • , Charles Peureux
    • , Pierre Rampal
    • , Gerhard Ressler
    • , Marie-Helene Rio
    • , Bjorn Rommen
    • , Jamie D. Shutler
    • , Martin Suess
    • , Michel Tsamados
    • , Clement Ubelmann
    • , Erik van Sebille
    • , Martin van den Oever
    •  & Detlef Stammer

    Frontiers in Marine Science (2019)