Mass coral bleaching causes population declines and mortality of coral reef species1 yet its impacts on behaviour are largely unknown. Here, we unite behavioural theory with community ecology to test whether bleaching-induced mass mortality of corals can cause consistent changes in the behaviour of coral-feeding fishes. We documented 5,259 encounters between individuals of 38 Chaetodon (butterflyfish) species on 17 reefs within the central Indo-Pacific, of which 3,828 were repeated on 10 reefs both before and after the global coral bleaching event in 2016. Aggression between butterflyfishes decreased by two-thirds following large-scale coral mortality, despite no significant change in fish abundance or community composition. Pairwise encounters were most likely to be aggressive between obligate corallivores and on reefs with high coral cover. After bleaching, the proportion of preferred Acropora corals in the diet decreased significantly (up to 85% fewer bites), with no increase in overall bite rate to compensate for the loss of these nutritionally rich corals. The observed reduced aggression at low resource levels due to nutritional deficit follows the predictions of the economic theory of aggressive behaviour2,3. Our results reveal synchronous changes in behaviour in response to coral mortality. Such changes could potentially disrupt territories4, leading to reorganization of ecological communities.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Pratchett, M. S. et al. in Oceanography and Marine Biology: An Annual Review Vol. 46 (eds Gibson, R. N. et al.) 251–296 (CRC, Boca Raton, 2008).

  2. 2.

    Peiman, K. S. & Robinson, B. W. Ecology and evolution of resource-related heterospecific aggression. Q. Rev. Biol. 85, 133–158 (2010).

  3. 3.

    Maher, C. R. & Lott, D. F. A review of ecological determinants of territoriality within vertebrate species. Am. Midl. Nat. 143, 1–29 (2000).

  4. 4.

    Samways, M. J. Breakdown of butterflyfish (Chaetodontidae) territories associated with the onset of a mass coral bleaching event. Aquat. Conser. Mar. Freshw. Ecosyst. 15, S101–S107 (2005).

  5. 5.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

  6. 6.

    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

  7. 7.

    McClanahan, T. R., Weil, E., Cortés, J., Baird, A. H. & Ateweberhan, M. in Coral Bleaching: Patterns, Processes, Causes and Consequences (eds van Oppen, M. J. H. & Lough, J. M.) 121–138 (Springer, Berlin, 2009).

  8. 8.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

  9. 9.

    Nagelkerken, I. & Munday, P. L. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob. Change Biol. 22, 974–989 (2016).

  10. 10.

    Keith, S. A. & Bull, J. W. Animal culture impacts species’ capacity to realise climate-driven range shifts. Ecography 40, 296–304 (2017).

  11. 11.

    Grether, G. F., Peiman, K. S., Tobias, J. A. & Robinson, B. W. Causes and consequences of behavioral interference between species. Trends Ecol. Evol. 32, 760–772 (2017).

  12. 12.

    Gause, G. F. The Struggle for Existence (Williams and Wilkins, Baltimore, 1934).

  13. 13.

    Allan, B. J. M., Domenici, P., Watson, S. A., Munday, P. L. & McCormick, M. I. Warming has a greater effect than elevated CO2 on predator-prey interactions in coral reef fish. Proc. R. Soc. B 284, 20170784 (2017).

  14. 14.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

  15. 15.

    Browman, H. I. Applying organized scepticism to ocean acidification research. ICES J. Mar. Sci. 73, 529–536 (2016).

  16. 16.

    Sundin, J. et al. Long-term exposure to elevated carbon dioxide does not alter activity levels of a coral reef fish in response to predator chemical cues. Behav. Ecol. Sociobiol. 71, 108 (2017).

  17. 17.

    Connell, J. H. in Experimental Marine Biology (ed. Mariscal, R.) 21–54 (Academic, New York, 1974).

  18. 18.

    Maynard Smith, J. Evolutionary Game Theory (Cambridge Univ. Press, Cambridge, 1982).

  19. 19.

    Blowes, S. A., Pratchett, M. S. & Connolly, S. R. Heterospecific aggression and dominance in a guild of coral-feeding fishes: the roles of dietry ecology and phylogeny. Am. Nat. 182, 157–168 (2013).

  20. 20.

    Yabuta, S. & Berumen, M. L. in Biology of Butterflyfishes (eds Pratchett, M. S. et al.) 200–225 (CRC, Boca Raton, 2014).

  21. 21.

    Stamps, J. A. The relationship between resource competition, risk, and aggression in a tropical territorial lizard. Ecology 58, 349–358 (1977).

  22. 22.

    Toms, J. D. Linking behavior and community ecology: interspecific aggression provides evidence for competition between a migrant and resident warbler. Ethology 119, 1057–1066 (2013).

  23. 23.

    Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (John Murray, London, 1859).

  24. 24.

    Biro, P. A., Beckmann, C. & Stamps, J. A. Small within-day increases in temperature affects boldness and alters personality in coral reef fish. Proc. R. Soc. B 277, 71–77 (2010).

  25. 25.

    Pratchett, M. S. in Biology of Butterflyfishes (eds Pratchett, M. S. et al.) 140–179 (CRC, Boca Raton, 2014).

  26. 26.

    Marshall, P. A. & Baird, A. H. Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19, 155–163 (2000).

  27. 27.

    Vahl, W. K., Lok, T., van der Meer, J., Piersma, T. & Weissing, F. J. Spatial clumping of food and social dominance affect interference competition among ruddy turnstones. Behav. Ecol. 16, 834–844 (2005).

  28. 28.

    Pratchett, M. S., Wilson, S. K. & Baird, A. H. Long-term monitoring of the Great Barrier Reef. J. Fish. Biol. 69, 1269–1280 (2006).

  29. 29.

    Pratchett, M. S., Wilson, S. K., Berumen, M. L. & McCormick, M. I. Sublethal effects of coral bleaching on an obligate coral feeding butterflyfish. Coral Reefs 23, 352–356 (2004).

  30. 30.

    Bonin, M. C., Boström-Einarsson, L., Munday, P. L. & Jones, G. P. The prevalence and importance of competition among coral reef fishes. Annu. Rev. Ecol. Evol. Syst. 46, 169–190 (2015).

  31. 31.

    Chandler, J. F., Burn, D., Berggren, P. & Sweet, M. J. Influence of resource availability on the foraging strategies of the triangle butterflyfish Chaetodon triangulum in the Maldives. PLoS One 11, e0151923 (2016).

  32. 32.

    Tricas, T. C. Determinants of feeding territory size in the corallivorous butterflyfish, Chaetodon multicinctus. Anim. Behav. 37, 830–841 (1989).

  33. 33.

    Nash Suding, K. & Goldberg, D. Do disturbances alter competitive hierarchies? Mechanisms of change following gap creation. Ecology 82, 2133–2149 (2001).

  34. 34.

    Tinbergen, N. The functions of territory. Bird Study 4, 14–27 (1957).

  35. 35.

    Berumen, M. L. & Pratchett, M. S. Recovery without resilience: persistent disturbance and long-term shifts in the structure of fish and coral communities at Tiahura Reef, Moorea. Coral Reefs 25, 647–653 (2006).

  36. 36.

    Berumen, M. L. & Pratchett, M. S. Effects of resource availability on the competitive behaviour of butterflyfishes (Chaetodontidae). In Proc. 10th International Coral Reef Symposium (ed. Suzuki, Y.) 644–650 (Japanese Coral Reef Society, 2006).

  37. 37.

    Pink, J. R. & Fulton, C. J. Fin spotting: efficacy of manual and video-based visual assessments of reef fish swimming behaviour. J. Exp. Mar. Bio. Ecol. 465, 92–98 (2015).

  38. 38.

    Kulbicki, M. How the acquired behaviour of commercial reef fishes may influence the results obtained from visual censuses. J. Exp. Mar. Bio. Ecol. 222, 11–30 (1998).

  39. 39.

    Pratchett, M. S. Dietary overlap among coral-feeding butterflyfishes (Chaetodontidae) at Lizard Island, northern Great Barrier Reef. Mar. Biol. 148, 373–382 (2005).

  40. 40.

    vegan: Community Ecology Package v.1. 17-6 (R Foundation, 2011); http://CRAN.R-project.org/package=vegan

  41. 41.

    Hodge, J. R., van Herwerden, L. & Bellwood, D. R. Temporal evolution of coral reef fishes: global patterns and disparity in isolated locations. J. Biogeogr. 41, 2115–2127 (2014).

  42. 42.

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

  43. 43.

    rstanarm: Bayesian applied regression modeling via Stan (Stan Development Team, 2016); http://mc-stan.org/

  44. 44.

    Monnahan, C. C., Thorson, J. T. & Branch, T. A. Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo. Methods Ecol. Evol. 8, 339–348 (2017).

Download references


We are grateful for funding support from VILLUM FONDEN (S.A.K., grant number 10114), the Danish National Research Foundation for support of the Center for Macroecology, Evolution and Climate (grant number DNRF96), and the Australian Research Council Centre of Excellence for Coral Reef Studies (AHB grant number CE140100020). For field assistance and logistical support, we thank N. Maginnis, L. Corner, T. Quimpo, V. Horigue and A. Roan; T. Naruse and R. Yoshida, the University of the Ryukyus Iriomote Field Station; Parks Australia and Christmas Island Divers Association; and R. Trono, A. Trono and staff of the Bontoc Seaview Guesthouse and Mabini Municipal Tourism Office, Batangas, Philippines. We also thank A. MacNeil for statistical advice and N. Graham and I. Hartley for constructive feedback on this manuscript.

Author information


  1. Lancaster Environment Centre, Lancaster University, Lancaster, UK

    • Sally A. Keith
  2. Center for Macroecology, Evolution & Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

    • Sally A. Keith
  3. Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia

    • Andrew H. Baird
    •  & Andrew S. Hoey
  4. Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia

    • Jean-Paul A. Hobbs
  5. The Hydrous, San Francisco, CA, USA

    • Erika S. Woolsey
  6. Stanford University, Hasso Plattner Institute of Design & The Center for Ocean Solutions, Palo Alto, CA, USA

    • Erika S. Woolsey
  7. Marine Science Department, Faculty of Marine & Fisheries, Syiah Kuala University, Banda Aceh, Indonesia

    • N. Fadli
  8. Environmental Program, Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA

    • Nathan J. Sanders


  1. Search for Sally A. Keith in:

  2. Search for Andrew H. Baird in:

  3. Search for Jean-Paul A. Hobbs in:

  4. Search for Erika S. Woolsey in:

  5. Search for Andrew S. Hoey in:

  6. Search for N. Fadli in:

  7. Search for Nathan J. Sanders in:


S.A.K. designed the study with input from J-P.A.H., A.H.B. and N.J.S.; S.A.K., J-P.A.H., A.H.B., E.S.W. and A.S.H. collected the data; N.F. provided fieldwork support; S.A.K. analysed the data and wrote the manuscript with contributions from all authors.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Sally A. Keith.

Supplementary information

  1. Supplementary Information

    Supplementary figures 1–6, Supplementary table 1

  2. Reporting Summary

About this article

Publication history