Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Greenland and Antarctic ice sheets under 1.5 °C global warming

Abstract

Even if anthropogenic warming were constrained to less than 2 °C above pre-industrial, the Greenland and Antarctic ice sheets will continue to lose mass this century, with rates similar to those observed over the past decade. However, nonlinear responses cannot be excluded, which may lead to larger rates of mass loss. Furthermore, large uncertainties in future projections still remain, pertaining to knowledge gaps in atmospheric (Greenland) and oceanic (Antarctica) forcing. On millennial timescales, both ice sheets have tipping points at or slightly above the 1.5–2.0 °C threshold; for Greenland, this may lead to irreversible mass loss due to the surface mass balance–elevation feedback, whereas for Antarctica, this could result in a collapse of major drainage basins due to ice-shelf weakening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Annual mean surface mass fluxes as a function of global mean temperature anomalies.
Fig. 2: GrIS stability as a function of the imposed regional summer temperature anomaly with best-estimate model parameter values.
Fig. 3: MISI and MICI as main drivers for potential (partial) collapse of the AIS.
Fig. 4: AIS stability as a function of the imposed regional annual mean temperature anomaly.

Similar content being viewed by others

Data availability

Data from CESM-CAM5 is available at: https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.lowwarming.html

References

  1. Enderlin, E. M. et al. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 41, 866–872 (2014).

    Article  Google Scholar 

  2. Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

    Article  CAS  Google Scholar 

  3. Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).

    Article  CAS  Google Scholar 

  4. Hanna, E., Mernild, S. H., Cappelen, J. & Steffen, K. Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environ. Res. Lett. 7, 045404 (2012).

    Article  Google Scholar 

  5. Hanna, E. et al. Ice-sheet mass balance and climate change. Nature 498, 51–59 (2013).

    Article  CAS  Google Scholar 

  6. Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13, 063008 (2018). A systematic, detailed and insightful review of Greenland Ice Sheet (and other land ice) mass balance changes between 1992 and 2016 that provides a very useful post-AR5 synthesis.

    Article  Google Scholar 

  7. Wilton, D. et al. High resolution (1 km) positive degree-day modelling of Greenland ice sheet surface mass balance, 1870–2012 using reanalysis data. J. Glaciol. 63, 176–193 (2016).

    Article  Google Scholar 

  8. Fettweis, X. et al. Brief communication: Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet. Cryosphere 7, 241–248 (2013).

    Article  Google Scholar 

  9. Hall, R., Erdélyi, R., Hanna, E., Jones, J. M. & Scaife, A. A. Drivers of North Atlantic polar front jet stream variability. Int. J. Climatol. 35, 1697–1720 (2015).

    Article  Google Scholar 

  10. Lim, Y.-K. et al. Atmospheric summer teleconnections and Greenland ice sheet surface mass variations: insights from MERRA-2. Environ. Res. Lett. 11, 024002 (2016).

    Article  Google Scholar 

  11. Hanna, E., Cropper, T. E., Hall, R. J. & Cappelen, J. Greenland blocking index 1851–2015: a regional climate change signal. Int. J. Climatol. 36, 4847–4861 (2016).

    Article  Google Scholar 

  12. Fettweis, X. et al. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 7, 469–489 (2013).

    Article  Google Scholar 

  13. Hofer, S., Tedstone, A. J., Fettweis, X. & Bamber, J. L. Decreasing cloud cover drives the recent mass loss on the Greenland ice sheet. Sci. Adv. 3, e1700584 (2017). This study highlights the importance of cloud cover changes on surface energy and mass balance in Greenland.

  14. Van den Broeke, M. et al. Greenland ice sheet surface mass loss: recent developments in observation and modeling. Curr. Clim. Change Rep. 3, 345–356 (2017). A state-of-the-science critical review of outstanding research questions in GrIS surface mass balance work.

    Article  Google Scholar 

  15. Van Tricht, K. et al. Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun. 7, 10266 (2016).

    Article  CAS  Google Scholar 

  16. Edwards, T. L. et al. Effect of uncertainty in surface mass balance-elevation feedback on projections of the future sea level contribution of the Greenland ice sheet. Cryosphere 8, 195–208 (2014).

    Article  Google Scholar 

  17. Vizcaino, M. et al. Coupled simulations of Greenland ice sheet and climate change up to A.D. 2300. Geophys. Res. Lett. 42, 3927–3935 (2015).

    Article  Google Scholar 

  18. Goelzer, H., Robinson, A., Seroussi, H. & van de Wal, R. Recent progress in Greenland ice sheet modelling. Curr. Clim. Change Rep. 3, 291–302 (2017).

    Article  Google Scholar 

  19. Moon, T., Joughin, I., Smith, B. & Howat, I. 21st-century evolution of Greenland outlet glacier velocities. Science 336, 576–578 (2012).

    Article  CAS  Google Scholar 

  20. Bigg, G. R. et al. A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change. Proc. R. Soc. A 470, 20130662 (2014).

    Article  CAS  Google Scholar 

  21. Holland, D. M., Thomas, R., deYoung, B., Ribergaard, M. & Lyberth, B. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat. Geosci. 1, 659–664 (2008).

    Article  CAS  Google Scholar 

  22. Khan, S. A. et al. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nat. Clim. Change 4, 292–299 (2014).

    Article  Google Scholar 

  23. Nick, F. M. et al. Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature 497, 235–238 (2013).

    Article  CAS  Google Scholar 

  24. Zwally, H. J. et al. Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297, 218–222 (2002).

    Article  CAS  Google Scholar 

  25. Sundal, A. et al. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 469, 521–524 (2011).

    Article  CAS  Google Scholar 

  26. Shannon, S. R. et al. Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise. Proc. Natl Acad. Sci. USA 110, 14156–14161 (2013).

    Article  CAS  Google Scholar 

  27. Fürst, J. J., Goelzer, H. & Huybrechts, P. Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming. Cryosphere 9, 1039–1062 (2015). Authoritative study on GrIS future change and resulting SLR to 2300, indicating that volume loss is mainly caused by increased surface melting and that the largest modelled uncertainties relate to surface mass balance and the underpinning climate projections rather than ice-sheet dynamics.

    Article  Google Scholar 

  28. Goelzer, H. et al. Sensitivity of Greenland ice sheet projections to model formulations. J. Glaciol. 59, 733–749 (2013).

    Article  Google Scholar 

  29. Nowicki, S. et al. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland. J. Geophys. Res. Earth Surf. 118, 1025–1044 (2013).

    Article  Google Scholar 

  30. Morlighem, M. et al. Modeling of Store Gletscher’s calving dynamics, West Greenland, in response to ocean thermal forcing. Geophys. Res. Lett. 43, 2659–2666 (2016).

    Article  Google Scholar 

  31. Aschwanden, A., Fahnestock, M. A. & Truffer, M. Complex Greenland outlet glacier flow captured. Nat. Commun. 7, 10524 (2016).

    Article  CAS  Google Scholar 

  32. Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H. & Larour, E. Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nat. Geosci. 7, 418–422 (2014).

    Article  CAS  Google Scholar 

  33. Benn, D. I., Warren, C. R. & Mottram, R. H. Calving processes and the dynamics of calving glaciers. Earth Sci. Rev. 82, 143–179 (2007).

    Article  Google Scholar 

  34. Bondzio, J. H. et al. The mechanisms behind Jakobshavn Isbrae’s acceleration and mass loss: a 3-D thermomechanical model study. Geophys. Res. Lett. 44, 6252–6260 (2017).

    Article  Google Scholar 

  35. Robinson, A. & Goelzer, H. The importance of insolation changes for paleo ice sheet modeling. Cryosphere 8, 1419–1428 (2014).

    Article  Google Scholar 

  36. Tedesco, M. et al. The darkening of the Greenland ice sheet: trends, drivers, and projections (1981–2100). Cryosphere 10, 477–496 (2016). An excellent and detailed review highlighting the importance of albedo changes in Greenland.

    Article  Google Scholar 

  37. Tedstone, A. J. et al. Dark ice dynamics of the south-west Greenland ice sheet. Cryosphere 11, 2491–2506 (2017).

    Article  Google Scholar 

  38. Ryan, J. C. et al. Dark zone of the Greenland ice sheet controlled by distributed biologically-active impurities. Nat. Commun. 9, 1065 (2018).

    Article  CAS  Google Scholar 

  39. Ridley, J., Gregory, J. M., Huybrechts, P. & Lowe, J. Thresholds for irreversible decline of the Greenland ice sheet. Clim. Dynam. 35, 1065–1073 (2010).

    Article  Google Scholar 

  40. Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Change 2, 429–432 (2012).

    Article  Google Scholar 

  41. Levermann, A. et al. The multimillennial sea-level commitment of global warming. Proc. Natl Acad. Sci. USA 110, 13745–13750 (2013).

    Article  CAS  Google Scholar 

  42. Shepherd, A. et al. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018). Most recent and up-to-date mass balance estimate of the AIS, showing significant increased contributions from the ice sheet to SLR over the past decade.

    Article  CAS  Google Scholar 

  43. Smith, A. M., Bentley, C. R., Bingham, R. G. & Jordan, T. A. Rapid subglacial erosion beneath Pine Island Glacier, West Antarctica. Geophys. Res. Lett. 39, L12501 (2012).

    Article  CAS  Google Scholar 

  44. Lenaerts, J. T. M., Vizcaino, M., Fyke, J., van Kampenhout, L. & van den Broeke, M. R. Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model. Clim. Dynam. 47, 1367–1381 (2016).

    Article  Google Scholar 

  45. Thomas, E. R. et al. Regional Antarctic snow accumulation over the past 1000 years. Clim. Past 13, 1491–1513 (2017).

    Article  Google Scholar 

  46. Palerme, C. et al. Evaluation of current and projected Antarctic precipitation in CMIP5 models. Clim. Dynam. 48, 225–239 (2017).

    Article  Google Scholar 

  47. Kuipers Munneke, P., Picard, G., Van Den Broeke, M. R., Lenaerts, J. T. M. & Van Meijgaard, E. Insignificant change in Antarctic snowmelt volume since 1979. Geophys. Res. Lett. 39, L01501 (2012).

    Article  Google Scholar 

  48. Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015).

    Article  CAS  Google Scholar 

  49. Kingslake, J., Ely, J. C., Das, I. & Bell, R. E. Widespread movement of meltwater onto and across Antarctic ice shelves. Nature 544, 349–352 (2017).

    Article  CAS  Google Scholar 

  50. Bell, R. E. et al. Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature 544, 344–348 (2017).

    Article  CAS  Google Scholar 

  51. Reese, R., Gudmundsson, G. H., Levermann, A. & Winkelmann, R. The far reach of ice-shelf thinning in Antarctica. Nat. Clim. Change 8, 53–57 (2018).

    Article  Google Scholar 

  52. Borstad, C. et al. A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B Ice Shelf. Geophys. Res. Lett. 43, 2027–2035 (2016).

    Article  Google Scholar 

  53. Scambos, T. A., Hulbe, C., Fahnestock, M. & Bohlander, J. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol. 46, 516–530 (2000).

    Article  Google Scholar 

  54. Munneke, P. K., Ligtenberg, S. R. M., Van Den Broeke, M. R. & Vaughan, D. G. Firn air depletion as a precursor of Antarctic ice-shelf collapse. J. Glaciol. 60, 205–214 (2014).

    Article  Google Scholar 

  55. Banwell, A. F., MacAyeal, D. R. & Sergienko, O. V. Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophys. Res. Lett. 40, 5872–5876 (2013).

    Article  Google Scholar 

  56. Massom, R. A. et al. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature 558, 383–389 (2018).

    Article  CAS  Google Scholar 

  57. Abram, N. J. et al. Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nat. Geosci. 6, 404–411 (2013).

    Article  CAS  Google Scholar 

  58. DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016). High-end projections of the AIS contribution to SLR based on ice-shelf hydrofracturing and subsequent ice cliff collapse.

    Article  CAS  Google Scholar 

  59. Jacobs, S. S., Jenkins, A., Giulivi, C. F. & Dutrieux, P. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci. 4, 519–523 (2011).

    Article  CAS  Google Scholar 

  60. Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article  CAS  Google Scholar 

  61. Greenbaum, J. S. et al. Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nat. Geosci. 8, 294–298 (2015).

    Article  CAS  Google Scholar 

  62. Wouters, B. et al. Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science 348, 899–903 (2015).

    Article  CAS  Google Scholar 

  63. Paolo, F. S. et al. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation. Nat. Geosci. 11, 121–126 (2018).

    Article  CAS  Google Scholar 

  64. Little, C. M. & Urban, N. M. CMIP5 temperature biases and 21st century warming around the Antarctic coast. Ann. Glaciol. 57, 69–78 (2016).

    Article  Google Scholar 

  65. Asay-Davis, X. S., Jourdain, N. C. & Nakayama, Y. Developments in simulating and parameterizing interactions between the Southern Ocean and the Antarctic Ice Sheet. Curr. Clim. Change Rep. 3, 316–329 (2017).

    Article  Google Scholar 

  66. Dinniman, M. S., Klinck, J. M. & Hofmann, E. E. Sensitivity of circumpolar deep water transport and ice shelf basal melt along the West Antarctic Peninsula to changes in the winds. J. Clim. 25, 4799–4816 (2012).

    Article  Google Scholar 

  67. Kusahara, K. & Hasumi, H. Pathways of basal meltwater from Antarctic ice shelves: a model study. J. Geophys. Res. Oceans 119, 5690–5704 (2014).

    Article  Google Scholar 

  68. Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J. & Rae, J. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485, 225–228 (2012).

    Article  CAS  Google Scholar 

  69. Timmermann, R. & Hellmer, H. H. Southern Ocean warming and increased ice shelf basal melting in the twenty-first and twenty-second centuries based on coupled ice-ocean finite-element modelling. Ocean Dynam. 63, 1011–1026 (2013).

    Article  Google Scholar 

  70. Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. 112, F03S28 (2007).

    Article  Google Scholar 

  71. Pattyn, F. et al. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP. Cryosphere 6, 573–588 (2012).

    Article  Google Scholar 

  72. Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Clim. Change 4, 117–121 (2014).

    Article  Google Scholar 

  73. Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).

    Article  CAS  Google Scholar 

  74. Mouginot, J., Rignot, E. & Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 41, 1576–1584 (2014).

    Article  Google Scholar 

  75. Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).

    Article  CAS  Google Scholar 

  76. Nias, I. J., Cornford, S. L. & Payne, A. J. Contrasting the modelled sensitivity of the Amundsen Sea embayment ice streams. J. Glaciol. 62, 552–562 (2016).

    Article  Google Scholar 

  77. Seroussi, H. et al. Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophys. Res. Lett. 44, 6191–6199 (2017).

    Article  Google Scholar 

  78. Bassis, J. N. & Walker, C. C. Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proc. R. Soc. A 468, 913–931 (2012).

    Article  Google Scholar 

  79. Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015).

    Article  CAS  Google Scholar 

  80. Cornford, S. L. et al. Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate. Cryosphere 9, 1579–1600 (2015).

    Article  Google Scholar 

  81. Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425 (2015). Long-term (multimillennial) projections of the AIS and potential tipping points.

    Article  CAS  Google Scholar 

  82. Gasson, E., DeConto, R. M., Pollard, D. & Levy, R. H. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc. Natl Acad. Sci. USA 113, 3459–3464 (2016).

    Article  CAS  Google Scholar 

  83. Golledge, N. R., Levy, R. H., McKay, R. M. & Naish, T. R. East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophys. Res. Lett. 44, 2343–2351 (2017).

    Google Scholar 

  84. Mengel, M. et al. Future sea level rise constrained by observations and long-term commitment. Proc. Natl Acad. Sci. USA 113, 2597–2602 (2016).

    Article  CAS  Google Scholar 

  85. Arthern, R. J. & Williams, C. R. The sensitivity of West Antarctica to the submarine melting feedback. Geophys. Res. Lett. 44, 2352–2359 (2017).

    Google Scholar 

  86. Waibel, M. S., Hulbe, C. L., Jackson, C. S. & Martin, D. F. Rate of mass loss across the instability threshold for Thwaites Glacier determines rate of mass loss for entire basin. Geophys. Res. Lett. 45, 809–816 (2018).

    Article  Google Scholar 

  87. Pattyn, F., Favier, L. & Sun, S. Progress in numerical modeling of Antarctic ice-sheet dynamics. Curr. Clim. Change Rep. 3, 174–184 (2017). Review of recent advances in modelling of the AIS that highlights our current understanding of ice-dynamical processes that are key to future predictions.

    Article  Google Scholar 

  88. Stewart, A. L., Klocker, A. & Menemenlis, D. Circum-Antarctic shoreward heat transport derived from an eddy- and tide-resolving simulation. Geophys. Res. Lett. 45, 834–845 (2018).

    Article  Google Scholar 

  89. Niwano, M. et al. NHM–SMAP: spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland ice sheet. Cryosphere 12, 635–655 (2018).

    Article  Google Scholar 

  90. Durand, G. & Pattyn, F. Reducing uncertainties in projections of Antarctic ice mass loss. Cryosphere 9, 2043–2055 (2015).

    Article  Google Scholar 

  91. Cornford, S. L. et al. Adaptive mesh, finite volume modeling of marine ice sheets. J. Comput. Phys. 232, 529–549 (2013).

    Article  Google Scholar 

  92. Nowicki, S. M. J. et al. Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6. Geosci. Model Dev. 9, 4521–4545 (2016). Outline of the new phase of ice-sheet model intercomparisons linked to CMIP6.

    Article  Google Scholar 

  93. Vernon, C. L. et al. Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere 7, 599–614 (2013).

    Article  Google Scholar 

  94. Nowicki, S. et al. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica. J. Geophys. Res. Earth Surf. 118, 1025–1044 (2013).

    Article  Google Scholar 

  95. Goelzer, H. et al. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. Cryosphere 12, 1433–1460 (2018).

    Article  Google Scholar 

  96. Zickfeld, K., Solomon, S. & Gilford, D. M. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases. Proc. Natl Acad. Sci. USA 114, 657–662 (2017).

    Article  CAS  Google Scholar 

  97. Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360–369 (2016).

    Article  Google Scholar 

  98. Thomas, Z. A. Using natural archives to detect climate and environmental tipping points in the Earth System. Quat. Sci. Rev. 152, 60–71 (2016).

    Article  Google Scholar 

  99. Robinson, A., Calov, R. & Ganopolski, A. An efficient regional energy-moisture balance model for simulation of the Greenland ice sheet response to climate change. Cryosphere 4, 129–144 (2010).

    Article  Google Scholar 

  100. Ganopolski, A., Winkelmann, R. & Schellnhuber, H. J. Critical insolation-CO2 relation for diagnosing past and future glacial inception. Nature 534, 1–2 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This paper is the result of the 2017 ISMASS (Ice-Sheet Mass Balance and Sea Level) workshop held in Brussels (Belgium), co-sponsored by WCRP/CliC (http://www.climate-cryosphere.org/activities/groups/ismass), IASC and SCAR. H.G., P.K.M. and M.v.d.B. acknowledge support from the NESSC.

Author information

Authors and Affiliations

Authors

Contributions

F.P. and C.R. coordinated the study. F.P., C.R. and E.H. led the writing, and all authors contributed to the writing and discussion of ideas. J.T.M.L., P.K.M. and L.D.T. contributed the data that are presented in Fig. 1. L.F. designed Fig. 3. N.R.G. provided the data that are presented in Fig. 4.

Corresponding author

Correspondence to Frank Pattyn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattyn, F., Ritz, C., Hanna, E. et al. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nature Clim Change 8, 1053–1061 (2018). https://doi.org/10.1038/s41558-018-0305-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-018-0305-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing