Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Snow–atmosphere coupling in the Northern Hemisphere

Abstract

Local and remote impacts of seasonal snow cover on atmospheric circulation have been explored extensively, with observational and modelling efforts focusing on how Eurasian autumn snow-cover variability potentially drives Northern Hemisphere atmospheric circulation via the generation of deep, planetary-scale atmospheric waves. Despite climate modelling advances, models remain challenged to reproduce the proposed sequence of processes by which snow cover can influence the atmosphere, calling into question the robustness of this coupling. Here, we summarize the current level of understanding of snow–atmosphere coupling, and the implications of this interaction under future climate change. Projected patterns of snow-cover variability and altered stratospheric conditions suggest a need for new model experiments to isolate the effect of projected changes in snow on the atmosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representing the sequence of processes by which snow cover can influence the atmosphere and subsequent atmospheric circulation.
Fig. 2: Non-stationarity of the response to fall Siberian snow anomalies in sensitivity studies.
Fig. 3: Future changes in mean and variance of October snow-cover extent projected by 22 CMIP5 models.
Fig. 4: Causality between the atmosphere and snow-cover anomalies over Siberia.

Similar content being viewed by others

References

  1. Cohen, J. Snow cover and climate. Weather 49, 150–156 (1994).

    Article  Google Scholar 

  2. Gutzler, D. S. & Rosen, R. D. Interannual variability of wintertime snow cover across the Northern Hemisphere. J. Clim. 5, 1441–1448 (1992).

    Article  Google Scholar 

  3. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  4. Brutel-Vuilmet, C., Ménégoz, M. & Krinner, G. An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models. Cryosphere 7, 67–80 (2013).

    Article  Google Scholar 

  5. Clark, M. P. & Serreze, M. C. Effects of variations in East Asian snow cover on modulating atmospheric circulation over the North Pacific Ocean. J. Clim. 13, 3700–3710 (2000).

    Article  Google Scholar 

  6. Cohen, J. & Entekhabi, D. The influence of snow cover on Northern Hemisphere climate variability. Atmos. Ocean 39, 35–53 (2001).

    Article  Google Scholar 

  7. Gong, G., Entekhabi, D. & Cohen, J. Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. J. Clim. 16, 3917–3931 (2003). Modelling study that reproduces the snow–(N)AO teleconnection and the stratospheric pathway in an AGCM, using observed snow anomalies.

    Article  Google Scholar 

  8. Fletcher, C. G., Kushner, P. J. & Cohen, J. Stratospheric control of the extratropical circulation response to surface forcing. Geophys. Res. Lett. 34, L21802 (2007).

    Article  Google Scholar 

  9. Fletcher, C. G., Hardiman, S. C., Kushner, P. J. & Cohen, J. The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J. Clim. 22, 1208–1222 (2009).

    Article  Google Scholar 

  10. Orsolini, J. Y. & Kvamstø, N. G. Role of Eurasian snow cover in wintertime circulation: decadal simulations forced with satellite observations. J. Geophys. Res. 114, 19108 (2009).

    Article  Google Scholar 

  11. Allen, R. J. & Zender, C. S. Forcing of the Arctic Oscillation by Eurasian snow cover. J. Clim. 24, 6528–6539 (2011).

    Article  Google Scholar 

  12. Peings, Y., Saint-Martin, D. & Douville, H. A numerical sensitivity study of the Siberian snow influence on the northern annular mode. J. Clim. 25, 592–607 (2012).

    Article  Google Scholar 

  13. Klingaman, N. P., Hanson, B. & Leathers, D. J. A teleconnection between forced Great Plains snow cover and European winter climate. J. Clim. 21, 2466–2483 (2008).

    Article  Google Scholar 

  14. Ge, Y. & Gong, G. North American snow depth and climate teleconnection patterns. J. Clim. 22, 217–233 (2009).

    Article  Google Scholar 

  15. Sobolowski, S., Gong, G. & Ting, M. Modeled climate state and dynamic responses to anomalous North American snow cover. J. Clim. 23, 785–799 (2010).

    Article  Google Scholar 

  16. Henderson, G. R., Leathers, D. J. & Hanson, B. Circulation response to Eurasian versus North American anomalous snow scenarios in the Northern Hemisphere with an AGCM coupled to a slab ocean model. J. Clim. 26, 1502–1515 (2013).

    Article  Google Scholar 

  17. Peings, Y., Brun, E., Mauvais, V. & Douville, H. How stationary is the relationship between Siberian snow and Arctic Oscillation over the 20th century? Geophys. Res. Lett. 40, 183–188 (2013).

    Article  Google Scholar 

  18. Furtado, J. C., Cohen, J. L., Butler, A. H., Riddle, E. E. & Kumar, A. Eurasian snow cover variability and links to winter climate in the CMIP5 models. Clim. Dynam. 45, 2591–2605 (2015). Investigates the snow–(N)AO teleconnection in CMIP5 GCMs and shows the lack of linkage in the models.

    Article  Google Scholar 

  19. Peings, Y., Douville, H., Colin, J., Saint Martin, D. & Magnusdottir, G. Snow–(N)AO teleconnection and its modulation by the Quasi-Biennial Oscillation. J. Clim. 30, 10211–10235 (2017). Explores the possible role of the QBO in modulating the snow–(N)AO teleconnection and explaining its non-stationarity.

    Article  Google Scholar 

  20. Douville, H., Peings, Y. & Saint-Martin, D. Snow-(N)AO relationship revisited over the whole twentieth century. Geophys. Res. Lett. 43, 569–577 (2017). Explores the snow–(NAO) teleconnection in various reanalysis datasets, and discusses potential causes for its non-stationarity.

    Article  Google Scholar 

  21. Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dynam. 38, 527–546 (2012).

    Article  Google Scholar 

  22. Barnes, E. A. & Screen, J. A. The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? WIREs Clim. Change 6, 277–286 (2015).

    Article  Google Scholar 

  23. Cohen, J. & Rind, D. The effect of snow cover on climate. J. Clim. 4, 689–706 (1991).

  24. Ross, B. & Walsh, J. Synoptic-scale influences of snow-cover and sea ice. Mon. Weath. Rev 114, 1795–1810 (1986).

    Article  Google Scholar 

  25. Barnett, T., Dumenil, L., Schlese, U., Roeckner, E. & Latif, M. The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci. 46, 661–685 (1989).

    Article  Google Scholar 

  26. Walland, D. J. & Simmonds, I. Modelled atmospheric response to changes in Northern Hemisphere snow cover. Clim. Dynam. 13, 25–34 (1996).

    Article  Google Scholar 

  27. Watanabe, M. & Nitta, T. Relative impacts of snow and sea surface temperature anomalies on an extreme phase in the winter atmospheric circulation. J. Clim. 11, 2837–2857 (1998).

    Article  Google Scholar 

  28. Watanabe, M. & Nitta, T. Decadal changes in the atmospheric circulation and associated surface climate variations in the Northern Hemisphere winter. J. Clim. 12, 494–509 (1999).

    Article  Google Scholar 

  29. Cohen, J., Saito, K. & Entekhabi, D. The role of the Siberian high in Northern Hemisphere climate variability. Geophys. Res. Lett. 28, 299–302 (2001).

    Article  Google Scholar 

  30. Cohen, J. & Entekhabi, D. Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett. 26, 345–348 (1999). Identifies a statistical link between the extent of snow in fall over Siberia and the following winter (N)AO.

    Article  Google Scholar 

  31. Bojariu, R. & Gimeno, L. The role of snow cover fluctuations in multiannual NAO persistence. Geophys. Res. Lett. 30, 1156 (2003).

    Article  Google Scholar 

  32. Saito, K., Cohen, J. & Entekhabi, D. Evolution of atmospheric response to early-season Eurasian snow cover anomalies. Mon. Weath. Rev. 129, 2746–2760 (2001). Proposes a physical mechanism for the observed snow–(N)AO linkage, involving upward wave-activity anomalies and a stratospheric pathway.

    Article  Google Scholar 

  33. Thompson, D. W. J. & Wallace, J. M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25, 1297–1300 (1998).

    Article  Google Scholar 

  34. Thompson, D. W. J. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: month-to-month variability. J. Clim 13, 1000–1016 (2000).

    Google Scholar 

  35. Gong, G., Entekhabi, D. & Cohen, J. Relative impacts of Siberian and North American snow anomalies on the winter Arctic Oscillation. Geophys. Res. Lett. 30, 1848 (2003).

    Article  Google Scholar 

  36. Gong, G., Entekhabi, D. & Cohen, J. Orographic constraints on a modeled Siberian snow-tropospheric-stratospheric teleconnection pathway. J. Clim. 17, 1176–1189 (2004).

    Article  Google Scholar 

  37. Gong, G., Entekhabi, D. & Cohen, J. Sensitivity of atmospheric response to modeled snow anomaly characteristics. J. Geophys. Res. 109, D06107 (2004).

    Article  Google Scholar 

  38. Dutra, E., Schär, C., Viterbo, P. & Miranda, P. M. A. Land atmosphere coupling associated with snow cover. Geophys. Res. Lett. 38, L15707 (2011).

    Article  Google Scholar 

  39. Gong, G., Entekhabi, D. & Cohen, J. A large-ensemble model study of the wintertime AO–NAO and the role of interannual snow perturbations. J. Clim. 15, 3488–3499 (2002).

    Article  Google Scholar 

  40. Smith, K. L., Kushner, P. J. & Cohen, J. The role of linear interference in Northern Annular Mode variability associated with Eurasian snow cover extent. J. Clim. 24, 6185–6202 (2011). Reveals the importance of the linear interference mechanism in the snow–(N)AO teleconnection.

    Article  Google Scholar 

  41. Screen, J. A., Deser, C., Simmonds, I. & Tomas, R. Atmospheric impacts of Arctic sea-ice loss, 1979–2009: separating forced change from atmospheric internal variability. Clim. Dynam. 43, 333–344 (2014).

    Article  Google Scholar 

  42. Hardiman, S. C., Kushner, P. J. & Cohen, J. Investigating the ability of general circulation models to capture the effects of Eurasian snow cover on winter climate. J. Geophys. Res. 113, D21123 (2008).

    Article  Google Scholar 

  43. Nishii, K., Nakamura, H. & Orsolini, Y. J. Cooling of the wintertime Arctic stratosphere induced by the western Pacific teleconnection pattern. Geophys. Res. Lett. 37, L13805 (2010).

    Google Scholar 

  44. Smith, K. L. & Kushner, P. J. Linear interference and the initiation of extratropical stratosphere-troposphere interactions. J. Geophys Res. 117, D13107 (2012).

    Google Scholar 

  45. Foster, J., Owe, M. & Rango, A. Snow cover and temperature relationships in North America and Eurasia. J. Clim. Appl. Meteor. 22, 460–469 (1983).

    Article  Google Scholar 

  46. Cohen, J. L. & Saito K. Eurasian snow cover, more skillful in predicting U.S. winter climate than the NAO/AO? Geophys. Res. Lett. 30, 2190 (2003).

    Article  Google Scholar 

  47. Cohen, J., Salstein, D. & Saito, K. A dynamical framework to understand and predict the major Northern Hemisphere mode. Geophys. Res. Lett. 29, 1412 (2002).

    Article  Google Scholar 

  48. Cohen, J., Barlow, M., Kushner, P. J. & Saito, K. Stratosphere-troposphere coupling and links with Eurasian land surface variability. J. Clim. 20, 5335–5343 (2007).

    Article  Google Scholar 

  49. Cohen, J. et al. Linking Siberian snow cover to precursors of stratospheric variability. J. Clim. 27, 5422–5432 (2014).

    Article  Google Scholar 

  50. Zhang, J., Tian, W., Chipperfield, M., Xie, F. & Huang, J. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat. Clim. Change 6, 1094–1099 (2016).

    Article  Google Scholar 

  51. Kretschmer, M. et al. More-persistent weak stratospheric polar vortex states linked to cold extremes. Bull. Am. Meteorol. Soc. 99, 49–60 (2017).

    Article  Google Scholar 

  52. Seviour, W. J. M. Weakening and shift of the Arctic stratospheric polar vortex: internal variability or forced response? Geophys. Res. Lett. 44, 3365–3373 (2017).

    Article  Google Scholar 

  53. Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N. & Holland, M. M. The emergence of surface-based Arctic amplification. Cryosphere 3, 11–19 (2009).

    Article  Google Scholar 

  54. Deser, C., Simpson, I. R., McKinnon, K. A. & Phillips, A. S. The Northern Hemisphere extra-tropical atmospheric circulation response to ENSO: how well do we know it and how do we evaluate models accordingly? J. Clim. 30, 5059–5082 (2017).

    Article  Google Scholar 

  55. Gershunov, A., Schneider, A. N. & Barnett, T. Low-frequency modulation of the ENSO–Indian monsoon rainfall relationship: signal or noise? J. Clim. 14, 2486–2492 (2001).

    Article  Google Scholar 

  56. Krasting, J. P., Broccoli, A. J., Dixon, K. W. & Lanzante, J. R. Future changes in Northern Hemisphere snowfall. J. Clim. 26, 7813–7828 (2013).

    Article  Google Scholar 

  57. Takala, M., Pulliainen, J., Metsamaki, S. J. & Koskinen, J. T. Detection of snowmelt using spaceborne microwave radiometer data in Eurasia from 1979 to 2007. IEEE Trans. Geosci. Remote Sens. 47, 2996–3007 (2009).

    Article  Google Scholar 

  58. Brown, R. D. & Derksen, C. Is Eurasian October snow cover extent increasing? Environ. Res. Lett. 8, 024006 (2013).

    Article  Google Scholar 

  59. Mudryk, L. R., Kushner, P. J., Derksen, C. & Thackeray, C. Snow cover response to temperature in observational and climate model ensembles. Geophys. Res. Lett. 44, 919–926 (2017).

    Article  Google Scholar 

  60. Hori, M. et al. A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sens. Environ. 191, 402–418 (2017).

    Article  Google Scholar 

  61. Ghatak, D., Frei, A., Gong, G., Stroeve, J. & Robinson, D. On the emergence of an Arctic amplification signal in terrestrial Arctic snow extent. J. Geophys. Res. 115, D24105 (2010).

    Article  Google Scholar 

  62. Alexander, M. A., Tomas, R., Deser, C. & Lawrence, D. M. The atmospheric response to projected terrestrial snow changes in the late twenty-first century. J. Clim. 23, 6430–6437 (2010). Explores how projected future changes in snow cover may affect the Northern Hemisphere climate at the end of the twenty-first century.

    Article  Google Scholar 

  63. Fyfe, J. C., Boer, G. J. & Flato, G. M. The Arctic and Antarctic Oscillations and their projected changes under global warming. Geophys. Res. Lett. 26, 1601–1604 (1999).

    Article  Google Scholar 

  64. Gillett, N. P. et al. How linear is the Arctic Oscillation response to greenhouse gases? J. Geophys. Res. Atmos. 107(D3), 4022 (2002).

    Article  Google Scholar 

  65. Miller, R. L., Schmidt, G. A. & Shindel, D. T. Forced annular changes in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res. 111, D18101 (2006).

    Article  Google Scholar 

  66. Gillett, N. P. & Fyfe, J. C. Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett. 40, 1189–1193 (2013).

    Article  Google Scholar 

  67. Cattiaux, J. & Cassou, C. Opposite CMIP3/CMIP5 trends in the wintertime Northern Annular Mode explained by combined local sea ice and remote tropical influences. Geophys. Res. Lett. 40, 3682–3687 (2013).

    Article  Google Scholar 

  68. Mitchell, D. M. et al. The effect of climate change on the variability of the Northern Hemisphere stratospheric polar vortex. J. Atmos. Sci. 69, 2608–2618 (2012).

    Article  Google Scholar 

  69. Kang, W. & Tziperman, E. More frequent sudden stratospheric warming events due to enhanced MJO forcing expected in a warmer climate. J. Clim. 30, 8727–8743 (2017).

    Article  Google Scholar 

  70. Scaife, A. A. et al. Skillful long-range prediction of European and North American winters. Geophys. Res. Lett. 41, 2514–2519 (2014).

    Article  Google Scholar 

  71. Eade, R. et al. Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett. 41, 5620–5628 (2014).

    Article  Google Scholar 

  72. Dunstone, N. et al. Skillful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci. 9, 809–814 (2016).

    Article  CAS  Google Scholar 

  73. Orsolini, Y. J. et al. Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/2010. Clim. Dynam. 47, 1325–1334 (2016).

    Article  Google Scholar 

  74. Wang, L., Ting, M. & Kushner, P. J. A robust empirical seasonal prediction of winter NAO and surface climate. Sci. Rep. 7, 279 (2017).

    Article  CAS  Google Scholar 

  75. Weisheimer, A., Schaller, N., O’Reilly, C., MacLeod, D. A. & Palmer, T. Atmospheric seasonal forecasts of the twentieth century: multi-decadal variability in predictive skill of the winter North Atlantic Oscillation and their potential value for extreme event attribution. Q. J. R. Meteorol. Soc. 143, 917–926 (2016).

    Article  Google Scholar 

  76. Riddle, E. E., Butler, A. H., Furtado, J. C., Cohen, J. L. & Kumar, A. CFSv2 ensemble prediction of the wintertime Arctic Oscillation. Clim. Dynam. 41, 1099–1116 (2013).

    Article  Google Scholar 

  77. Limpasuvan, V., Thompson, D. W. J. & Hartmann, D. L. The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Clim. 17, 2584–2596 (2004).

    Article  Google Scholar 

  78. Kolstad, E. W. & Charlton-Perez, A. J. Observed and simulated precursors of stratospheric polar vortex anomalies in the Northern Hemisphere. Clim. Dynam. 37, 1443 (2011).

    Article  Google Scholar 

  79. Watt-Meyer, O. & Kushner, P. J. Why are temperature and upward wave activity flux positively skewed in the polar stratosphere? J. Clim. 31, 115–130 (2018).

    Article  Google Scholar 

  80. Cohen, J. L. & Fletcher, C. G. Improved skill of Northern Hemisphere winter surface temperature predictions based on land-atmosphere fall anomalies. J. Clim. 20, 4118–4132 (2007).

    Article  Google Scholar 

  81. Lee, Y. Y. & Black, R. X. Boreal winter low frequency variability in CMIP5 models. J. Geophys. Res. Atmos 118, 6891–6904 (2013).

    Article  Google Scholar 

  82. Newman, P. A., Nash, E. R. & Rosenfield, J. E. What controls the temperature of the Arctic stratosphere during the spring? J. Geophys. Res. 106, 19 999–20 010 (2001).

    Article  Google Scholar 

  83. Polvani, L. M. & Waugh, D. W. Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Clim. 17, 3548–3554 (2004).

    Article  Google Scholar 

  84. Charlton-Perez, A. et al. On the lack of stratospheric dynamical variability in low-top version of the CMIP5 models. J. Geophys. Res. Atmos. 118, 2494–2505 (2013).

    Article  Google Scholar 

  85. Lehtonen, I. & Karpechko, A. Y. Observed and modeled tropospheric cold anomalies associated with sudden stratospheric warmings. J. Geophys. Res. Atmos. 121, 1591–1610 (2016).

    Article  Google Scholar 

  86. Song, Y. & Robinson, W. A. Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci. 61, 1711–1725 (2004).

    Article  Google Scholar 

  87. Shaw, T. A., Perlwitz, J. & Harnik, N. Downward wave coupling between the stratosphere and troposphere: the importance of meridional wave guiding and comparison with zonal-mean coupling. J. Clim. 23, 6365–6381 (2010).

    Article  Google Scholar 

  88. Thompson, D. W. J., Furtado, J. C. & Shepherd, T. G. On the tropospheric response to anomalous stratospheric wave drag and radiative heating. J. Atmos. Sci. 63, 2616–2629 (2006).

    Article  Google Scholar 

  89. Roff, G., Thompson, D. W. J. & Hendon, H. Does increasing model stratospheric resolution improve extended range forecast skill? Geophys. Res. Lett. 38, L05809 (2011).

    Article  Google Scholar 

  90. Richter, J. H., Solomon, A. & Bacmeister, J. T. Effects of vertical resolution and non-orographic gravity wave drag on the simulated climate in the community atmosphere model, version 5. J. Adv. Model. Earth Syst. 6, 357–383 (2014).

    Article  Google Scholar 

  91. Karpechko, A. Y., Hitchcock, P., Peters, D. H. & Schneidereit, A. Predictability of downward propagation of major sudden stratospheric warmings. Q. J. R. Meteorol. Soc. 143, 1459–1470 (2017).

    Article  Google Scholar 

  92. Mote, T. L. On the role of snow cover in depressing air temperature. J. Appl. Meteorol. Climatol. 47, 2008–2022 (2008).

    Article  Google Scholar 

  93. Vavrus, S. The role of terrestrial snow cover in the climate system. Clim. Dynam. 29, 73–88 (2007).

    Article  Google Scholar 

  94. Baldwin, M. P. & Dunkerton, T. J. Stratospheric harbingers of anomalous weather regimes. Science 294, 581–584 (2001).

    Article  CAS  Google Scholar 

  95. Baldwin, M. P. et al. Stratospheric memory and skill of extended-range weather forecasts. Science 301, 636–640 (2003).

    Article  CAS  Google Scholar 

  96. Sun, L., Deser, C. & Tomas, R. A. Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Clim. 28, 7824–7845 (2015).

    Article  Google Scholar 

  97. Screen, J. A. Simulated atmospheric response to regional and pan-Arctic sea ice loss. J. Clim. 30, 3945–3962 (2017).

    Article  Google Scholar 

  98. Furtado, J. C., Cohen, J. L. & Tziperman, E. The combined influences of autumnal snow and sea ice on Northern Hemisphere winters. Geophys. Res. Lett. 43, 3478–3485 (2016).

    Article  Google Scholar 

  99. Mori, M., Wanatabe, M., Shiogama, H., Inoue, J. & Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 7, 869–873 (2014).

    Article  CAS  Google Scholar 

  100. Cohen, J. & Jones J. A new index for more accurate winter predictions. Geophys. Res. Lett. 38, L21701 (2011).

    Article  Google Scholar 

  101. Haustein, K. et al. Frame: a real-time global warming index. Sci. Rep. 7, 15417 (2017).

    Article  CAS  Google Scholar 

  102. Robinson, D. A. et al. NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE): Monthly Eurasian Snow Cover Version 1 (NOAA National Centers for Environmental Information, accessed 10 May 2018).

  103. Monthly Mean AO Index (NOAA Climate Prediction Center, accessed xx month year); http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.current.ascii.table

Download references

Acknowledgements

This work was partially supported by the Natural Science and Engineering Research Council of Canada under CanSISE and by the National Science Foundation under grant no. NSF PHY-1748958. Y.P. is supported by the National Science Foundation under grant no. NSF AGS-1624038. G.R.H. is supported by SERDP and ESTCP under grant no. RC18-Z1-1658. The authors also thank E. A. Barnes and J. A. Screen for encouraging us to use their Can it? /Has it? /Will it? analysis framework.

Author information

Authors and Affiliations

Authors

Contributions

G.R.H. outlined the study scope, which was then further developed by all authors. Y.P. led the Can it? section and produced Figs. 24, Supplementary Fig. 2 and Box 2. J.C.F. and G.R.H. led the Has it? section, and developed Fig. 1. J.C.F. performed the analysis for Supp. Figure 1. P.J.K. helped frame the paper, and led the Box 1 discussion along with J.C.F. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Gina R. Henderson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures 1-2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henderson, G.R., Peings, Y., Furtado, J.C. et al. Snow–atmosphere coupling in the Northern Hemisphere. Nature Clim Change 8, 954–963 (2018). https://doi.org/10.1038/s41558-018-0295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-018-0295-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing