Rapid change in East Antarctic terrestrial vegetation in response to regional drying

Abstract

East Antarctica has shown little evidence of warming to date1,2,3 with no coherent picture of how climate change is affecting vegetation4,5,6. In stark contrast, the Antarctic Peninsula experienced some of the most rapid warming on the planet at the end of the last century2,3,7,8 causing changes to the growth and distribution of plants9,10,11. Here, we show that vegetation in the Windmill Islands, East Antarctica is changing rapidly in response to a drying climate. This drying trend is evident across the region, as demonstrated by changes in isotopic signatures measured along moss shoots12,13, moss community composition and declining health, as well as long-term observations of lake salinity14 and weather. The regional drying is possibly due to the more positive Southern Annular Mode in recent decades. The more positive Southern Annular Mode is a consequence of Antarctic ozone depletion and increased greenhouse gases, and causes strong westerly winds to circulate closer to the continent, maintaining colder temperatures in East Antarctica despite the increasing global average15,16,17,18. Colder summers in this region probably result in reduced snow melt and increased aridity. We demonstrate that rapid vegetation change is occurring in East Antarctica and that its mosses provide potentially important proxies for monitoring coastal climate change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Changes in East Antarctic moss communities.
Fig. 2: Community composition at two sites in the Windmill Islands, East Antarctica, sampled over six summer seasons between 2000 and 2013.
Fig. 3: Change in moss health between 2003 and 2013 at two East Antarctic sites.
Fig. 4: Rate of change in moisture availability in East Antarctic mosses since 1960.
Fig. 5: Summer (December to February) SAM and meteorological observations for the Windmill Islands since 1961.

Data availability

Datasets are publicly available from the Australian Antarctic Data Centre (AADC) at https://doi.org/10.4225/15/59c999a4c2145.

References

  1. 1.

    Doran, P. T. et al. Antarctic climate cooling and terrestrial ecosystem response. Nature 415, 517–520 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    Convey, P. et al. Antarctic climate change and the environment. Antarct. Sci. 21, 541–563 (2009).

    Article  Google Scholar 

  3. 3.

    Turner, J. et al. Antarctic climate change and the environment: an update. Polar Rec. 50, 237–259 (2014).

    Article  Google Scholar 

  4. 4.

    Robinson, S. A., Wasley, J. & Tobin, A. K. Living on the edge—plants and global change in continental and maritime Antarctica. Glob. Change Biol. 9, 1681–1717 (2003).

    Article  Google Scholar 

  5. 5.

    Guglielmin, M., Fratte, M. D. & Cannone, N. Permafrost warming and vegetation changes in continental Antarctica. Environ. Res. Lett. 9, 045001 (2014).

    Article  Google Scholar 

  6. 6.

    Brabyn, L. et al. Quantified vegetation change over 42 years at Cape Hallett, East Antarctica. Antarct. Sci. 18, 561–572 (2006).

    Article  Google Scholar 

  7. 7.

    Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411–415 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Bromwich, D. H. et al. Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci. 6, 139–145 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Parnikoza, I. et al. Current status of the Antarctic herb tundra formation in the central Argentine Islands. Glob. Change Biol. 15, 1685–1693 (2009).

    Article  Google Scholar 

  10. 10.

    Amesbury, M. J. et al. Widespread biological response to rapid warming on the Antarctic Peninsula. Curr. Biol. 27, 1616–1622 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Hill, P. W. et al. Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition. Nat. Clim. Change 1, 50–53 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Clarke, L. J., Robinson, S. A., Hua, Q., Ayre, D. J. & Fink, D. Radiocarbon bomb spike reveals biological effects of Antarctic climate change. Glob. Change Biol. 18, 301–310 (2012).

    Article  Google Scholar 

  13. 13.

    Bramley-Alves, J., Wanek, W., French, K. & Robinson, S. A. Moss δ13C: an accurate proxy for past water environments in polar regions. Glob. Change Biol. 21, 2454–2464 (2015).

    Article  Google Scholar 

  14. 14.

    Hodgson, D. A. et al. Recent rapid salinity rise in three East Antarctic lakes. J. Paleolimnol. 36, 385–406 (2006).

    Article  Google Scholar 

  15. 15.

    Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).

    Article  Google Scholar 

  16. 16.

    Robinson, S. A. & Erickson, D. J. Not just about sunburn—the ozone hole’s profound effect on climate has significant implications for Southern Hemisphere ecosystems. Glob. Change Biol. 21, 515–527 (2015).

    Article  Google Scholar 

  17. 17.

    Marshall, G. J. & Thompson, D. W. J. The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures. J. Geophys. Res. Atmos. 121, 3276–3289 (2016).

    Article  Google Scholar 

  18. 18.

    Abram, N. J. et al. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Change 4, 564–569 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  Google Scholar 

  20. 20.

    Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84, 203–244 (2014).

    Article  Google Scholar 

  21. 21.

    Wasley, J., Robinson, S. A., Lovelock, C. E. & Popp, M. Some like it wet—biological characteristics underpinning tolerance of extreme water stress events in Antarctic bryophytes. Funct. Plant Biol. 33, 443–455 (2006).

    Article  Google Scholar 

  22. 22.

    Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Lenné, T., Bryant, G., Hocart, C. H., Huang, C. X. & Ball, M. C. Freeze avoidance: a dehydrating moss gathers no ice. Plant Cell Environ. 33, 1731–1741 (2010).

    Article  Google Scholar 

  24. 24.

    Wasley, J. et al. Bryophyte species composition over moisture gradients in the Windmill Islands, East Antarctica: development of a baseline for monitoring climate change impacts. Biodiversity 13, 257–264 (2012).

    Article  Google Scholar 

  25. 25.

    Melick, D. & Seppelt, R. Vegetation patterns in relation to climatic and endogenous changes in Wilkes Land, continental Antarctica. J. Ecol. 85, 43–56 (1997).

    Article  Google Scholar 

  26. 26.

    Malenovský, Z., Turnbull, J. D., Lucieer, A. & Robinson, S. A. Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data. New Phytol. 208, 608–624 (2015).

    Article  Google Scholar 

  27. 27.

    Williamson, C. E. et al. Solar ultraviolet radiation in a changing climate. Nat. Clim. Change 4, 434–441 (2014).

    Article  Google Scholar 

  28. 28.

    Assessment for Decision-Makers: Scientific Assessment of Ozone Depletion: 2014 Report No. 56 (World Meteorological Organization, 2014).

  29. 29.

    Villalba, R. et al. Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nat. Geosci. 5, 793–798 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Weimerskirch, H., Louzao, M., De Grissac, S. & Delord, K. Changes in wind pattern alter albatross distribution and life-history traits. Science 335, 211–214 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Gooseff, M. N. et al. Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. Nat. Ecol. Evol. 1, 1334–1338 (2017).

    Article  Google Scholar 

  32. 32.

    Dunn, J. L. & Robinson, S. A. Ultraviolet B screening potential is higher in two cosmopolitan moss species than in a co-occurring Antarctic endemic moss: implications of continuing ozone depletion. Glob. Change Biol. 12, 2282–2296 (2006).

    Article  Google Scholar 

  33. 33.

    Lovelock, C. E. & Robinson, S. A. Surface reflectance properties of Antarctic moss and their relationship to plant species, pigment composition and photosynthetic function. Plant Cell Environ. 25, 1239–1250 (2002).

    Article  Google Scholar 

  34. 34.

    Robinson, S. A., Wasley, J. & King, D. Indicator 72—Windmill Islands Terrestrial Vegetation Dynamics (Australian Antarctic Data Centre, 2009); https://go.nature.com/2xm08l7

  35. 35.

    Australia State of the Environment 2011: Independent Report to the Australian Government Minister for Sustainability, Environment, Water, Population and Communities 477–565 (State of the Environment 2011 Committee, 2011).

  36. 36.

    Lewis Smith, R. I. Plant community dynamics in Wilkes Land, Antarctica. Proc. NIPR Symp. Polar Biol. 3, 229–244 (1990).

    Google Scholar 

  37. 37.

    Emslie, S. D. & Woehler, E. J. A 9000-year record of Adélie penguin occupation and diet in the Windmill Islands, East Antarctica. Antarct. Sci. 17, 57–66 (2005).

    Article  Google Scholar 

  38. 38.

    Robinson, S. A., Wasley, J., Popp, M. & Lovelock, C. E. Desiccation tolerance of three moss species from continental Antarctica. Funct. Plant Biol. 27, 379–388 (2000).

    CAS  Article  Google Scholar 

  39. 39.

    Waterman, M. J. The What and Where of Ultraviolet Protective Mechanisms in Antarctic Mosses. PhD thesis, Univ. Wollongong (2015).

  40. 40.

    Ashcroft, M. B. et al. Moving beyond presence and absence when examining changes in species distributions. Glob. Change Biol. 23, 2929–2940 (2017).

    Article  Google Scholar 

  41. 41.

    Selkirk, P. M. & Seppelt, R. D. Species distribution within a moss bed in Greater Antarctica. Symp. Biol. Hungarica 35, 279–284 (1987).

    Google Scholar 

  42. 42.

    Post, A. Photoprotective pigment as an adaptive strategy in the Antarctic moss Ceratodon purpureus. Polar Biol. 10, 241–245 (1990).

    Article  Google Scholar 

  43. 43.

    Waterman, M. J. et al. Antarctic moss biflavonoids show high antioxidant and ultraviolet-screening activity. ‎J. Nat. Prod. 80, 2224–2231 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Drǎguţ, L., Tiede, D. & Levick, S. R. ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 24, 859–871 (2010).

    Article  Google Scholar 

  45. 45.

    Royles, J. et al. Plants and soil microbes respond to recent warming on the Antarctic Peninsula. Curr. Biol. 23, 1702–1706 (2013).

    CAS  Article  Google Scholar 

  46. 46.

    Hua, Q. Radiocarbon: a chronological tool for the recent past. Quat. Geochronol. 4, 378–390 (2009).

    Article  Google Scholar 

  47. 47.

    Rubino, M. et al. A revised 1000 year atmospheric δ13C-CO2 record from Law Dome and South Pole, Antarctica. J. Geophys. Res. Atmos. 118, 8482–8499 (2013).

    CAS  Google Scholar 

  48. 48.

    Dan, Y. The paper trail of the 13C of atmospheric CO2 since the industrial revolution period. Environ. Res. Lett. 6, 034007 (2011).

    Article  Google Scholar 

  49. 49.

    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article  Google Scholar 

  50. 50.

    Hogg, A. G. et al. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 1889–1903 (2013).

    CAS  Article  Google Scholar 

  51. 51.

    Hua, Q., Barbetti, M. & Rakowski, A. Z. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55, 2059–2072 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    Williams, T. & Flanagan, L. Effect of changes in water content on photosynthesis, transpiration and discrimination against 13CO2 and C18O16O in Pleurozium and Sphagnum. Oecologia 108, 38–46 (1996).

    Article  Google Scholar 

  53. 53.

    Rice, S. Variation in carbon isotope discrimination within and among Sphagnum species in a temperate wetland. Oecologia 123, 1–8 (2000).

    CAS  Article  Google Scholar 

  54. 54.

    Rice, S. K. & Giles, L. The influence of water content and leaf anatomy on carbon isotope discrimination and photosynthesis in Sphagnum. Plant Cell Environ. 19, 118–124 (1996).

    CAS  Article  Google Scholar 

  55. 55.

    Farquhar, G., Ehleringer, J. & Hubick, K. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 40, 503–537 (1989).

    CAS  Article  Google Scholar 

  56. 56.

    Ducré-Robitaille, J.-F., Vincent, L. A. & Boulet, G. Comparison of techniques for detection of discontinuities in temperature series. Int. J. Climatol. 23, 1087–1101 (2003).

    Article  Google Scholar 

  57. 57.

    Ruggieri, E. A Bayesian approach to detecting change points in climatic records. Int. J. Climatol. 33, 520–528 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank D. Bergstrom, Z. Malenovský, A. Nydahl, J. Dunn, A. Lucieer and other Australian National Antarctic Research Expedition expeditioners for assistance in the field, A. Netherwood for production of Fig. 1, and B. Raymond and A. Constable for providing feedback on the manuscript. Funding was provided by the Australian Research Council (DP110101714 and DP180100113), Antarctic Science Grants 1313, 3129, 3042 and 4046, and Australian Institute of Nuclear Science and Engineering grants 05142P and 06155. We acknowledge financial support from the Australian Government for the Centre for Accelerator Science at ANSTO through the National Collaborative Research Infrastructure Strategy and the University of Wollongong’s Global Challenges Program as part of the Sustaining Coastal and Marine Zones challenge. J.W., L.J.C., J.B.-A., M.J.W. and D.H.K. were supported by Australian Postgraduate Awards/Research Training Program scholarships. M.J.W. also received an Australian Institute of Nuclear Science and Engineering postgraduate award (grant ALNSTU2110).

Author information

Affiliations

Authors

Contributions

S.A.R., D.H.K., J.B.-A., M.J.W., J.W., J.D.T., E.R.-C. and L.J.C. conceived the experiments. J.B.-A., J.W., J.D.T., S.A.R., R.E.M., E.R.-C. and L.J.C. performed the fieldwork. D.H.K. performed the image analysis. D.H.K., J.B.-A., J.W., J.D.T., T.B. and K.M. processed the moss microsamples. L.J.C., S.A.R., J.B.-A. and M.J.W. identified samples to species level. M.J.W., J.B.-A., L.J.C., L.A.B. and Q.H. performed the dating and isotope analysis. M.B.A., D.H.K., M.J.W., J.B.-A. and Q.H. analysed the data. S.A.R., M.B.A., M.J.W., D.H.K., J.B.-A., J.W., J.D.T., R.E.M. and Q.H. co-wrote the manuscript.

Corresponding author

Correspondence to Sharon A. Robinson.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary tables S1–S2, Supplementary figures 1–3, Supplementary references

Fig2_Model.txt

R2OpenBUGS Bayesian model used by the R script (Fig2_script.txt) to estimate the change in relative abundance of three moss species and moribund (dead or dying) moss over time

Fig2_script.txt

The relative abundance of each species in each quadrat and each year was modelled in R using the R2OpenBUGS Bayesian modelling package (see Fig2_Model.txt) and this R script (Fig2_script.txt)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Robinson, S.A., King, D.H., Bramley-Alves, J. et al. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nature Clim Change 8, 879–884 (2018). https://doi.org/10.1038/s41558-018-0280-0

Download citation

Further reading