Article | Published:

Latitudinal limits to the predicted increase of the peatland carbon sink with warming

Nature Climate Change (2018) | Download Citation

Abstract

The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around ad 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The datasets generated and analysed during the current study are available in the Supplementary Information and from the corresponding authors upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

  2. 2.

    Gregory, J. M., Jones, C. D., Cadule, P. & Friedlingstein, P. Quantifying carbon cycle feedbacks. J. Clim. 22, 5232–5250 (2009).

  3. 3.

    Matthews, H. D., Eby, M., Ewen, T., Friedlingstein, P. & Hawkins, B. J. What determines the magnitude of carbon cycle–climate feedbacks? Glob. Biogeochem. Cycles 21, GB2012 (2007).

  4. 4.

    Yu, Z. C., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).

  5. 5.

    Spahni, R., Joos, F., Stocker, B. D., Steinacher, M. & Yu, Z. C. Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century. Clim. Past 9, 1287–1308 (2013).

  6. 6.

    Chaudhary, N., Miller, P. A. & Smith, B. Modelling Holocene peatland dynamics with an individual-based dynamic vegetation model. Biogeosciences 14, 2571–2596 (2017).

  7. 7.

    Ise, T., Dunn, A. L., Wofsy, S. C. & Moorcroft, P. R. High sensitivity of peat decomposition to climate change through water-table feedback. Nat. Geosci. 1, 763–766 (2008).

  8. 8.

    Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–619 (2009).

  9. 9.

    Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 7, 13723 (2011).

  10. 10.

    Blodau, C., Siems, M. & Beer, J. Experimental burial inhibits methanogenesis and anaerobic decomposition in water-saturated peats. Environ. Sci. Technol. 45, 9984–9989 (2011).

  11. 11.

    Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24, 1028–1042 (2014).

  12. 12.

    Charman, D. J. et al. Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences 10, 929–944 (2013).

  13. 13.

    Yu, Z. Holocene carbon flux histories of the world’s peatlands: global carbon cycle implications. Holocene 21, 761–774 (2011).

  14. 14.

    Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).

  15. 15.

    Michaletz, S. T., Cheng, D., Kerkhoff, A. J. & Enquist, B. J. Convergence of terrestrial plant production across global climate gradients. Nature 512, 39–43 (2014).

  16. 16.

    Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).

  17. 17.

    Jones, C. et al. Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 Earth System models under four Representative Concentration Pathways. J. Clim. 26, 4398–4413 (2013).

  18. 18.

    Gorham, E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1, 182–195 (1991).

  19. 19.

    Korhola, A., Alm, J., Tolonen, K., Turunen, J. & Jungner, H. Three-dimensional reconstruction of carbon accumulation and CH4 emission during nine millenia in a raised mire. J. Quat. Sci. 11, 161–165 (1996).

  20. 20.

    Väliranta, M. et al. Holocene fen–bog transitions, current status in Finland and future perspectives. Holocene 27, 752–764 (2017).

  21. 21.

    Cooper, M. D. A. et al. Limited contribution of permafrost carbon to methane release from thawing peatlands. Nat. Clim. Change 7, 507–511 (2017).

  22. 22.

    Jones, M. C. et al. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Glob. Change Biol. 23, 1109–1127 (2017).

  23. 23.

    Ott, C. A. & Chimner, R. A. Long-term peat accumulation in temperate forested peatlands (Thuja occidentalis swamps) in the Great Lakes region of North America. Mires Peat 18, 1–9 (2016).

  24. 24.

    Wang, H., Richardson, C. J., & Ho, M. Dual controls on carbon loss during drought in peatlands. Nat. Clim. Change 5, 584–587 (2015).

  25. 25.

    Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).

  26. 26.

    Moore, S. et al. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493, 660–663 (2013).

  27. 27.

    Cressie, N. A. C. Statistics for Spatial Data (John Wiley & Sons Inc, New York, 1993).

  28. 28.

    Bol, R. A., Harkness, D. D., Huang, Y. & Howard, D. M. The influence of soil processes on carbon isotope distribution and turnover in the British uplands. Eur. J. Soil Sci. 50, 41–51 (1999).

  29. 29.

    New, M., Hulme, M. & Jones, P. D. Representing twentieth century space–time climate variability. Part 1: development of a 1961–90 mean monthly terrestrial climatology. J. Clim. 12, 829–856 (1999).

  30. 30.

    Gallego-Sala, A. V., & Prentice, I. C. Blanket peat biome endangered by climate change. Nat. Clim. Change 3, 152–155 (2013).

  31. 31.

    Diggle, P. & Riberio, P. J. Jr. Model-based Geostatistics (Springer, New York, 2007).

  32. 32.

    Goovaerts, P. Geostatistics for Natural Resources Evaluation (Oxford Univ. Press, Oxford, 1997).

  33. 33.

    Pebesma, E. J. Multivariable geostatistics in S: the gstat package. Comput. Geosci. 30, 683–691 (2004).

  34. 34.

    Hijmans, R. J. et al. Raster: geographic analysis and modeling with raster data. R package v.2.5-8. (CRAN, 2016); https://cran.r-project.org/web/packages/raster/index.html

  35. 35.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  36. 36.

    Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).

  37. 37.

    Collins, W. J. et al. Development and evaluation of an Earth-System model – HadGEM2. Geosci. Model Dev. 4, 1051–1075 (2011).

Download references

Acknowledgements

The work presented in this paper was funded by the Natural Environment Research Council (NERC standard grant number NE/I012915/1) to D.J.C., A.G.S., I.C.P., S.P. and P.F., supported by NERC Radiocarbon Allocation 1681.1012. The work and ideas in this paper have also been supported by PAGES funding, as part of C-PEAT. C.D.J. was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). This research is also a contribution to the AXA Chair Programme in Biosphere and Climate Impacts and the Imperial College initiative on Grand Challenges in Ecosystems and the Environment. This research was also supported by a grant from the National Science Centre, Poland 2015/17/B/ST10/01656. We thank D. Vitt, J. Alm, I. E. Bauer, N. Rausch, V. Beaulieu-Audy, L. Tremblay, S. Pratte, A. Lamarre, D. Anderson and A. Ireland for contributing data to this compilation, S. Frolking for suggestions on different moisture indexes, and A. Whittle and F. Dearden for their work in the Exeter laboratories.

Author information

Affiliations

  1. Geography Department, University of Exeter, Exeter, UK

    • Angela V. Gallego-Sala
    • , Dan J. Charman
    • , Matthew J. Amesbury
    • , Donna Carless
    • , Elizabeth Cressey
    • , Lisa Orme
    • , Thomas P. Roland
    • , Nicole K. Sanderson
    • , Natascha Steinberg
    • , Joanna Uglow
    •  & Joana Zaragoza-Castells
  2. Department of Geography, University of Utah, Salt Lake City, UT, USA

    • Simon Brewer
  3. School of Geography, Geology and the Environment, University of Leicester, Leicester, UK

    • Susan E. Page
  4. Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK

    • I. Colin Prentice
  5. College of Engineering, Maths and Physics, University of Exeter, Exeter, UK

    • Pierre Friedlingstein
  6. NERC Radiocarbon Facility, East Kilbride, UK

    • Steve Moreton
  7. Department of Geography, University of Hawaii at Manoa, Honolulu, HI, USA

    • David W. Beilman
    •  & Charly Massa
  8. Department of Geology, Lund University, Lund, Sweden

    • Svante Björck
    • , Rixt de Jong
    •  & Ulla Kokfelt
  9. Institute for Monitoring Climatic and Ecological Systems, Siberian branch of the Russian Academy of Science (IMCES SB RAS), Tomsk, Russia

    • Tatiana Blyakharchuk
  10. Department of Earth and Environmental Science, Lehigh University, Bethlehem, PA, USA

    • Christopher Bochicchio
    • , Robert K. Booth
    •  & Zicheng Yu
  11. Department of Geography and Earth Science, University of Wisconsin-La Crosse, La Crosse, WI, USA

    • Joan Bunbury
  12. Environmental Studies Program and Earth and Oceanographic Science Department, Bowdoin College, Brunswick, ME, USA

    • Philip Camill
  13. School of Forest Research and Environmental Sciences, Michigan Technical University, Houghton, MI, USA

    • Rodney A. Chimner
    •  & John Hribjlan
  14. Division of Earth and Ecosystem Sciences, DRI, Las Vegas, NV, USA

    • Michael Clifford
  15. Environment Department, University of York, York, UK

    • Colin Courtney-Mustaphi
    • , Esther Githumbi
    •  & Robert Marchant
  16. Department of Archaeology and Ancient History, Uppsala Universitet, Uppsala, Sweden

    • Colin Courtney-Mustaphi
  17. EcoLab, Université de Toulouse, CNRS, INPT, UPS, Castanet Tolosan, France

    • François De Vleeschouwer
    •  & Gael Le Roux
  18. Department of Biogeography and Palaeoecology, Adam Mickiewicz University, Poznań, Poland

    • Barbara Fialkiewicz-Koziel
    • , Mariusz Lamentowicz
    •  & Katarzyna Marcisz
  19. Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada

    • Sarah A. Finkelstein
  20. GEOTOP, Université du Québec à Montréal, Montréal, Quebec, Canada

    • Michelle Garneau
    • , Gabriel Magnan
    •  & Simon van Bellen
  21. Institute of Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA

    • James Holmquist
    •  & Glen M. MacDonald
  22. Geography and Environment, University of Southampton, Southampton, UK

    • Paul D. M. Hughes
  23. MET Office, Hadley Centre, Exeter, UK

    • Chris Jones
  24. USGS, Reston, Virginia, VA, USA

    • Miriam C. Jones
  25. Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia

    • Edgar Karofeld
  26. Department of Geological Sciences, University of Alaska, Anchorage, Anchorage, AK, USA

    • Eric S. Klein
  27. ECRU, University of Helsinki, Helsinki, Finland

    • Atte Korhola
    • , Paul Mathijssen
    •  & Minna Väliranta
  28. Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, British Columbia, Canada

    • Terri Lacourse
  29. Laboratory of Wetland Ecology and Monitoring, Adam Mickiewicz University, Poznań, Poland

    • Mariusz Lamentowicz
    •  & Katarzyna Marcisz
  30. Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK

    • David Large
  31. Département de Géographie et Centre d’Études Nordiques, Université Laval, Québec City, Quebec, Canada

    • Martin Lavoie
  32. Department of Geography, Texas A&M University, College Station, TX, USA

    • Julie Loisel
  33. School of Geography, Politics and Sociology, Newcastle University, Newcastle-upon-Tyne, UK

    • Helen Mackay
  34. Geological Survey of Finland, Espoo, Finland

    • Markku Makila
  35. Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

    • Katarzyna Marcisz
  36. Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain

    • Antonio Martínez Cortizas
    •  & Noemí Silva-Sánchez
  37. Geosciences, University of Aberdeen, Aberdeen, UK

    • Dmitri Mauquoy
    •  & Timothy Mighall
  38. School of Natural Sciences, Trinity College Dublin, Dublin, Ireland

    • Fraser J. G. Mitchell
  39. School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia

    • Patrick Moss
  40. Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA

    • Jonathan Nichols
  41. Arctic Centre, University of Lapland, Rovaniemi, Finland

    • Pirita O. Oksanen
  42. Department of Geology and Geophysics, Norwegian Polar Institute, Tromsø, Norway

    • Lisa Orme
  43. Science and Research Branch, Ministry of Natural Resources and Forestry, Sault Ste. Marie, Ontario, Canada

    • Maara S. Packalen
  44. Champlain College, Dublin, Ireland

    • Stephen Robinson
  45. Department of Physical Geography, Stockholm University, Stockholm, Sweden

    • A. Britta K. Sannel
  46. School of Geography, University of Leeds, Leeds, UK

    • Graeme T. Swindles
    •  & T. Edward Turner
  47. The Forestry Commission, Galloway Forest District, Newton Stewart, UK

    • T. Edward Turner
  48. BIAX Consult, Zaandam, the Netherlands

    • Marjolein van der Linden
  49. IBED, Universiteit van Amsterdam, Amsterdam, the Netherlands

    • Bas van Geel
  50. Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, China

    • Guoping Wang
  51. Key Laboratory of Wetland Ecology, Institute for Mire and Peat Research, Northeast Normal University, Changchun, China

    • Zicheng Yu
  52. Institute of Geographical Science and Natural Resources, Chinese Academy of Science, Beijing, China

    • Yan Zhao

Authors

  1. Search for Angela V. Gallego-Sala in:

  2. Search for Dan J. Charman in:

  3. Search for Simon Brewer in:

  4. Search for Susan E. Page in:

  5. Search for I. Colin Prentice in:

  6. Search for Pierre Friedlingstein in:

  7. Search for Steve Moreton in:

  8. Search for Matthew J. Amesbury in:

  9. Search for David W. Beilman in:

  10. Search for Svante Björck in:

  11. Search for Tatiana Blyakharchuk in:

  12. Search for Christopher Bochicchio in:

  13. Search for Robert K. Booth in:

  14. Search for Joan Bunbury in:

  15. Search for Philip Camill in:

  16. Search for Donna Carless in:

  17. Search for Rodney A. Chimner in:

  18. Search for Michael Clifford in:

  19. Search for Elizabeth Cressey in:

  20. Search for Colin Courtney-Mustaphi in:

  21. Search for François De Vleeschouwer in:

  22. Search for Rixt de Jong in:

  23. Search for Barbara Fialkiewicz-Koziel in:

  24. Search for Sarah A. Finkelstein in:

  25. Search for Michelle Garneau in:

  26. Search for Esther Githumbi in:

  27. Search for John Hribjlan in:

  28. Search for James Holmquist in:

  29. Search for Paul D. M. Hughes in:

  30. Search for Chris Jones in:

  31. Search for Miriam C. Jones in:

  32. Search for Edgar Karofeld in:

  33. Search for Eric S. Klein in:

  34. Search for Ulla Kokfelt in:

  35. Search for Atte Korhola in:

  36. Search for Terri Lacourse in:

  37. Search for Gael Le Roux in:

  38. Search for Mariusz Lamentowicz in:

  39. Search for David Large in:

  40. Search for Martin Lavoie in:

  41. Search for Julie Loisel in:

  42. Search for Helen Mackay in:

  43. Search for Glen M. MacDonald in:

  44. Search for Markku Makila in:

  45. Search for Gabriel Magnan in:

  46. Search for Robert Marchant in:

  47. Search for Katarzyna Marcisz in:

  48. Search for Antonio Martínez Cortizas in:

  49. Search for Charly Massa in:

  50. Search for Paul Mathijssen in:

  51. Search for Dmitri Mauquoy in:

  52. Search for Timothy Mighall in:

  53. Search for Fraser J. G. Mitchell in:

  54. Search for Patrick Moss in:

  55. Search for Jonathan Nichols in:

  56. Search for Pirita O. Oksanen in:

  57. Search for Lisa Orme in:

  58. Search for Maara S. Packalen in:

  59. Search for Stephen Robinson in:

  60. Search for Thomas P. Roland in:

  61. Search for Nicole K. Sanderson in:

  62. Search for A. Britta K. Sannel in:

  63. Search for Noemí Silva-Sánchez in:

  64. Search for Natascha Steinberg in:

  65. Search for Graeme T. Swindles in:

  66. Search for T. Edward Turner in:

  67. Search for Joanna Uglow in:

  68. Search for Minna Väliranta in:

  69. Search for Simon van Bellen in:

  70. Search for Marjolein van der Linden in:

  71. Search for Bas van Geel in:

  72. Search for Guoping Wang in:

  73. Search for Zicheng Yu in:

  74. Search for Joana Zaragoza-Castells in:

  75. Search for Yan Zhao in:

Contributions

A.G.S. carried out analysis and interpretation of the data and wrote the first draft of the paper. D.J.C. supervised the project and contributed to experimental design, interpretation of results and the final draft. S.Br. carried out the statistical and spatial analysis of the data and contributed to the design of the final figures. S.M. was responsible for new radiocarbon analyses. Z.Y. provided the peatland map used in the modelling and contributed data and materials. C.J. provided climate and gross primary productivity data. L.O. carried out the age-depth models for all cores. All authors contributed either data or materials to be analysed in the Geography laboratories at the University of Exeter. All authors contributed to the preparation of the final paper.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Angela V. Gallego-Sala or Dan J. Charman.

Supplementary information

  1. Supplementary Information

    Supplementary Tables 1–3, Supplementary Figures 1–5 and Supplementary References.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41558-018-0271-1