Climatic and socioeconomic controls of future coastal flood risk in Europe

Abstract

Rising extreme sea levels (ESLs) and continued socioeconomic development in coastal zones will lead to increasing future flood risk along the European coastline. We present a comprehensive analysis of future coastal flood risk (CFR) for Europe that separates the impacts of global warming and socioeconomic development. In the absence of further investments in coastal adaptation, the present expected annual damage (EAD) of €1.25 billion is projected to increase by two to three orders of magnitude by the end of the century, ranging between 93 and €961 billion. The current expected annual number of people exposed (EAPE) to coastal flooding of 102,000 is projected to reach 1.52–3.65 million by the end of the century. Climate change is the main driver of the future rise in coastal flood losses, with the importance of coastward migration, urbanization and rising asset values rapidly declining with time. To keep future coastal flood losses constant relative to the size of the economy, flood defence structures need to be installed or reinforced to withstand increases in ESLs that range from 0.5 to 2.5 m.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Projected evolution of coastal flood impacts aggregated at European level.
Fig. 2: Relative contributions of climate and socioeconomic drivers to the projected changes in EAD as a percentage of GDP under the three scenarios.
Fig. 3: Relative contributions of physical drivers to the changes in projected EAD.
Fig. 4: Estimated rise in elevation of flood protection needed to keep EAD as a percentage of GDP to present day levels.

References

  1. 1.

    Hallegatte, S., Green, C., Nicholls, R. J. & Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Change 3, 802–806 (2013).

    Article  Google Scholar 

  2. 2.

    Bertin, X. et al. A modeling-based analysis of the flooding associated with Xynthia, central Bay of Biscay. Coast. Eng. 94, 80–89 (2014).

    Article  Google Scholar 

  3. 3.

    Watson, C. S. et al. Unabated global mean sea-level rise over the satellite altimeter era. Nat. Clim. Change 5, 565–568 (2015).

    Article  Google Scholar 

  4. 4.

    Fasullo, J. T., Nerem, R. S. & Hamlington, B. Is the detection of accelerated sea level rise imminent? Sci. Rep. 6, 31245 (2016).

    Article  CAS  Google Scholar 

  5. 5.

    Haigh, I. D. et al. Timescales for detecting a significant acceleration in sea level rise. Nat. Commun. 5, 3635 (2014).

    Article  CAS  Google Scholar 

  6. 6.

    Jevrejeva, S., Jackson, L. P., Riva, R. E. M., Grinsted, A. & Moore, J. C. Coastal sea level rise with warming above 2 °C. Proc. Natl Acad. Sci. USA 113, 13342–13347 (2016).

    Article  CAS  Google Scholar 

  7. 7.

    Kopp, R. E. et al. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2, 383–406 (2014).

    Article  Google Scholar 

  8. 8.

    Idier, D., Paris, F., Cozannet, G. L., Boulahya, F. & Dumas, F. Sea-level rise impacts on the tides of the European Shelf. Cont. Shelf Res. 137, 56–71 (2017).

    Article  Google Scholar 

  9. 9.

    Pickering, M. D. et al. The impact of future sea-level rise on the global tides. Cont. Shelf Res. 142, 50–68 (2017).

    Article  Google Scholar 

  10. 10.

    Lowe, J. A. & Gregory, J. M. The effects of climate change on storm surges around the United Kingdom. Phil. Trans. R. Soc. A 363, 1313–1328 (2005).

    Article  CAS  Google Scholar 

  11. 11.

    Marcos, M., Jordà, G., Gomis, D. & Pérez, B. Changes in storm surges in southern Europe from a regional model under climate change scenarios. Glob. Planet. Change 77, 116–128 (2011).

    Article  Google Scholar 

  12. 12.

    Little, C. M. et al. Joint projections of US East Coast sea level and storm surge. Nat. Clim. Change 5, 1114–1120 (2015).

    Article  Google Scholar 

  13. 13.

    Perez, J., Menendez, M., Camus, P., Mendez, F. J. & Losada, I. J. Statistical multi-model climate projections of surface ocean waves in Europe. Ocean Model. 96, 161–170 (2015).

    Article  Google Scholar 

  14. 14.

    Hemer, M. A., Fan, Y., Mori, N., Semedo, A. & Wang, X. L. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Change 3, 471–476 (2013).

    Article  Google Scholar 

  15. 15.

    Vousdoukas, M. I. et al. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 9, 2360 (2018).

  16. 16.

    Hauer, M. E., Evans, J. M. & Mishra, D. R. Millions projected to be at risk from sea-level rise in the continental United States. Nat. Clim. Change 6, 691–695 (2016).

    Article  Google Scholar 

  17. 17.

    Bouwer, L. M., Crompton, R. P., Faust, E., Höppe, P. & Pielke, R. A. Confronting disaster losses. Science 318, 753–753 (2007).

    Article  CAS  Google Scholar 

  18. 18.

    IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (Cambridge Univ. Press, 2012).

  19. 19.

    Bouwer, L. M. Projections of future extreme weather losses under changes in climate and exposure. Risk Anal. 33, 915–930 (2013).

    Article  Google Scholar 

  20. 20.

    Hinkel, J., Nicholls, R., Vafeidis, A., Tol, R. J. & Avagianou, T. Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA. Mitig. Adapt. Strateg. Glob. Change 15, 703–719 (2010).

    Article  Google Scholar 

  21. 21.

    Lin, N., Kopp, R. E., Horton, B. P. & Donnelly, J. P. Hurricane Sandy’s flood frequency increasing from year 1800 to 2100. Proc. Natl Acad. Sci. USA 113, 12071–12075 (2016).

    Article  CAS  Google Scholar 

  22. 22.

    Hinkel, J. et al. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl Acad. Sci. USA 111, 3292–3297 (2014).

    Article  CAS  Google Scholar 

  23. 23.

    Wahl, T. et al. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. Nat. Commun. 8, 16075 (2017).

    Article  CAS  Google Scholar 

  24. 24.

    Hinkel, J., van Vuuren, D. P., Nicholls, R. J. & Klein, R. J. T. The effects of adaptation and mitigation on coastal flood impacts during the 21st century. An application of the DIVA and IMAGE models. Climatic Change 117, 783–794 (2013).

    Article  Google Scholar 

  25. 25.

    Muis, S. et al. A comparison of two global datasets of extreme sea levels and resulting flood exposure. Earth’s Future 5, 379–392 (2017).

    Article  Google Scholar 

  26. 26.

    Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10, e0118571 (2015).

    Article  CAS  Google Scholar 

  27. 27.

    Vousdoukas, M. I., Mentaschi, L., Vousdoukas, E., Verlaan, M. & Feyen, L. Extreme sea levels on the rise along Europe’s coasts. Earth’s Future 5, 304–323 (2017).

    Article  Google Scholar 

  28. 28.

    Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the shared socioeconomic pathways. Environ. Res. Lett. 11, 084003 (2016).

    Article  Google Scholar 

  29. 29.

    Vousdoukas, M. I. et al. Developments in large-scale coastal flood hazard mapping. Nat. Hazards Earth Syst. Sci. 16, 1841–1853 (2016).

    Article  Google Scholar 

  30. 30.

    Huizinga, H. J. Flood Damage Functions for EU Member States (HKV Consultants, 2007).

  31. 31.

    Scussolini, P. et al. FLOPROS: an evolving global database of flood protection standards. Nat. Hazards Earth Syst. Sci. Discuss. 3, 7275–7309 (2015).

    Article  Google Scholar 

  32. 32.

    Jongman, B. et al. Declining vulnerability to river floods and the global benefits of adaptation. Proc. Natl Acad. Sci. USA 112, E2271–E2280 (2015).

    Article  CAS  Google Scholar 

  33. 33.

    Alfieri, L., Feyen, L., Dottori, F. & Bianchi, A. Ensemble flood risk assessment in Europe under high end climate scenarios. Glob. Environ. Change 35, 199–212 (2015).

    Google Scholar 

  34. 34.

    Winsemius, H. C. et al. Global drivers of future river flood risk. Nat. Clim. Change 6, 381–385 (2016).

    Article  Google Scholar 

  35. 35.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article  CAS  Google Scholar 

  36. 36.

    Vitousek, S. et al. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 7, 1399 (2017).

    Article  CAS  Google Scholar 

  37. 37.

    Bouwer, L. M. & Jonkman, S. N. Global mortality from storm surges is decreasing. Environ. Res. Lett. 13, 014008 (2018).

    Article  Google Scholar 

  38. 38.

    Kreibich, H. et al. Adaptation to flood risk: results of international paired flood event studies. Earth’s Future 5, 953–965 (2017).

    Article  Google Scholar 

  39. 39.

    Delta Committee Working Together with Water. A Living Land Builds for its Future (TU Delft, 2008).

  40. 40.

    Brown, S. et al. Shifting perspectives on coastal impacts and adaptation. Nat. Clim. Change 4, 752–755 (2014).

    Article  Google Scholar 

  41. 41.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  42. 42.

    O'Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 387–400 (2014).

    Article  Google Scholar 

  43. 43.

    van Vuuren, D. P. et al. A new scenario framework for Climate Change Research: scenario matrix architecture. Climatic Change 122, 373–386 (2014).

    Article  Google Scholar 

  44. 44.

    van Vuuren, D. P. & Carter, T. R. Climate and socioeconomic scenarios for climate change research and assessment: reconciling the new with the old. Climatic Change 122, 415–429 (2014).

    Article  Google Scholar 

  45. 45.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

    Article  Google Scholar 

  46. 46.

    Vousdoukas, M. I., Voukouvalas, E., Annunziato, A., Giardino, A. & Feyen, L. Projections of extreme storm surge levels along Europe. Clim. Dynam. 47, 3171–3190 (2016).

    Article  Google Scholar 

  47. 47.

    Mentaschi, L., Vousdoukas, M. I., Voukouvalas, E., Dosio, A. & Feyen, L. Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophys. Res. Lett. 44, 2416–2426 (2017).

    Google Scholar 

  48. 48.

    Mentaschi, L. et al. Non-stationary extreme value analysis: a simplified approach for Earth science applications. Hydrol. Earth Syst. Sci. Discuss. 2016, 1–38 (2016).

    Article  Google Scholar 

  49. 49.

    Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).

    Article  Google Scholar 

  50. 50.

    Jackson, L. P. & Jevrejeva, S. A probabilistic approach to 21st century regional sea-level projections using RCP and high-end scenarios. Glob. Planet. Change 146, 179–189 (2016).

    Article  Google Scholar 

  51. 51.

    Reuter, H. I., Nelson, A. & Jarvis, A. An evaluation of void‐filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 21, 983–1008 (2007).

    Article  Google Scholar 

  52. 52.

    Neal, J. et al. Evaluating a new LISFLOOD-FP formulation with data from the summer 2007 floods in Tewkesbury, UK. J. Flood Risk Manage. 4, 88–95 (2011).

    Article  Google Scholar 

  53. 53.

    Bates, P. D., Horritt, M. S. & Fewtrell, T. J. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol. 387, 33–45 (2010).

    Article  Google Scholar 

  54. 54.

    Bates, P. D. & De Roo, A. P. J. A simple raster-based model for flood inundation simulation. J. Hydrol. 236, 54–77 (2000).

    Article  Google Scholar 

  55. 55.

    Ciscar, J. et al. Climate Impacts in Europe: The JRC PESETA II Project (Joint Research Centre, 2014).

  56. 56.

    Rojas, R., Feyen, L. & Watkiss, P. Climate change and river floods in the European Union: socio-economic consequences and the costs and benefits of adaptation. Glob. Environ. Change 23, 1737–1751 (2013).

    Article  Google Scholar 

  57. 57.

    Batista e Silva, F., Gallego, J. & Lavalle, C. A high-resolution population grid map for Europe. J. Maps 9, 16–28 (2013).

    Article  Google Scholar 

  58. 58.

    Batista e Silva, F., Lavalle, C. & Koomen, E. A procedure to obtain a refined European land use/cover map. J. Land Use Sci. 8, 255–283 (2012).

    Article  Google Scholar 

  59. 59.

    Vousdoukas, M. I. et al. Understanding epistemic uncertainty in large-scale coastal flood risk assessment for present and future climates. Nat. Hazards Earth Syst. Sci. https://doi.org/10.5194/nhess-2018-127 (2018).

  60. 60.

    Alfieri, L. et al. Global projections of river flood risk in a warmer world. Earth’s Future 5, 171–182 (2017).

    Article  Google Scholar 

  61. 61.

    Digital Map of The Netherlands, (AHN, accessed 1 January 2018); http://www.ahn.nl.

  62. 62.

    Vafeidis, A. T. et al. A new global coastal database for impact and vulnerability analysis to sea-level rise. J. Coast. Res. 24, 917–924 (2008).

    Article  Google Scholar 

  63. 63.

    Spatial Flood Defences (UK Environment Agency, accessed 1 January 2018); https://data.gov.uk/dataset/6884fcc7-4204-4028-b2fb-5059ea159f1c/spatial-flood-defences-including-standardised-attributes.

  64. 64.

    Annual Report 2017 (Ministry of Infrastructure and Water Management, 2017); http://publicaties.minienm.nl/download-bijlage/93184/annual-report-rijkswaterstaat-2017.pdf.

  65. 65.

    Paprotny, D. & Terefenko, P. New estimates of potential impacts of sea level rise and coastal floods in Poland. Nat. Hazards 85, 1249–1277 (2017).

    Article  Google Scholar 

  66. 66.

    Verwaest, T. et al. in 33rd Conference on Coastal Engineering (eds Lynett, P. & McKee Smith, J.) Poster 23 (Coastal Engineering Research Council, 2012).

  67. 67.

    Recorded Flood Outlines (UK Environmental Agency, accessed 1 January 2018); http://environment.data.gov.uk/ds/catalogue/#/8c75e700-d465-11e4-8b5b-f0def148f590.

  68. 68.

    Gestão da Zona Costeira O Desafio da Mudança (in Portugese) (Portuguese Environment Agency, 2014); http://www.apambiente.pt/_zdata/DESTAQUES/2015/GTL_Relatorio%20Final_20150416.pdf.

  69. 69.

    Submerged Areas (Ministry of Ecological Transition and Solidarity, accessed 1 January 2018); https://go.nature.com/2ASoGGv.

  70. 70.

    Impacts du Changement Climatique: Adaptation et Coûts Associés en France pour les Risques Côtiers (in French) (BRGM, 2009);http://infoterre.brgm.fr/rapports/RP-57141-FR.pdf.

  71. 71.

    Jongman, B. et al. Increasing stress on disaster-risk finance due to large floods. Nat. Clim. Change 4, 264–268 (2014).

    Article  Google Scholar 

  72. 72.

    Muis, S., Verlaan, M., Winsemius, H. C., AertsJ. C. J. H. & Ward, P. A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 7, 11969 (2016).

    Article  CAS  Google Scholar 

  73. 73.

    Jagers, B. R. et al. in American Geophysical Union, Fall Meeting 2014 San Francisco (American Geophysical Union, 2014).

  74. 74.

    Éléments de Mémoire sur la Tempête Xynthia du 27 et 28 Février 2010 (in French) (State Services of the Charente-Maritime Prefecture, 2011); https://go.nature.com/2KEbnZJ.

  75. 75.

    Tempete Xynthia: Retour d’Experience, Evaluation et Propositions d’Action (in French) (Ministry of the Interior, 2010); https://go.nature.com/2OUQGfJ.

  76. 76.

    Breilh, J. F., Chaumillon, E., Bertin, X. & Gravelle, M. Assessment of static flood modeling techniques: application to contrasting marshes flooded during Xynthia (western France). Nat. Hazards Earth Syst. Sci. 13, 1595–1612 (2013).

    Article  Google Scholar 

  77. 77.

    Wagenaar, D. J., de Bruijn, K. M., Bouwer, L. M. & de Moel, H. Uncertainty in flood damage estimates and its potential effect on investment decisions. Nat. Hazards Earth Syst. Sci. 16, 1–14 (2016).

    Article  Google Scholar 

  78. 78.

    Thieken, A. H. et al. The flood of June 2013 in Germany: how much do we know about its impacts? Nat. Hazards Earth Syst. Sci. 16, 1519–1540 (2016).

    Article  Google Scholar 

  79. 79.

    Vousdoukas, M. I., Ferreira, O., Almeida, L. P. & Pacheco, A. Toward reliable storm-hazard forecasts: XBeach calibration and its potential application in an operational early-warning system. Ocean Dynam. 62, 1001–1015 (2012).

    Article  Google Scholar 

  80. 80.

    Roelvink, D. et al. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 56, 1133–1152 (2009).

    Article  Google Scholar 

  81. 81.

    McCall, R. T. et al. Modelling storm hydrodynamics on gravel beaches with XBeach-G. Coast. Eng. 91, 231–250 (2014).

    Article  Google Scholar 

  82. 82.

    Vousdoukas, M. I., Almeida, L. P. & Ferreira, Ó. Beach erosion and recovery during consecutive storms at a steep-sloping, meso-tidal beach. Earth Surf. Proc. Land. 37, 583–691 (2012).

    Article  Google Scholar 

  83. 83.

    Qi, H., Cai, F., Lei, G., Cao, H. & Shi, F. The response of three main beach types to tropical storms in South China. Mar. Geol. 275, 244–254 (2010).

    Article  Google Scholar 

  84. 84.

    Davidson, M. A., Splinter, K. D. & Turner, I. L. A simple equilibrium model for predicting shoreline change. Coast. Eng. 73, 191–202 (2013).

    Article  Google Scholar 

  85. 85.

    Yates, M. L., Guza, R. T., O’Reilly, W. C., Hansen, J. E., & Barnard, P. Equilibrium shoreline response of a high wave energy beach. J. Geophys. Res. C 116, C04014 (2011).

  86. 86.

    Bruun, P. Sea level rise as a cause of shore erosion. J. Waterway Harbors Div. 88, 117–130 (1962).

    Google Scholar 

  87. 87.

    Cooper, J. A. G. & Pilkey, O. H. Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Glob. Planet. Change 43, 157–171 (2004).

    Article  Google Scholar 

  88. 88.

    Matias, A., Ferreira, Ó., Vila-Concejo, A., Garcia, T. & Dias, J. A. Classification of washover dynamics in barrier islands. Geomorphology 97, 655–674 (2008).

    Article  Google Scholar 

  89. 89.

    McCall, R. T. et al. Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island. Coast. Eng. 57, 668–683 (2010).

    Article  Google Scholar 

  90. 90.

    Oumeraci, H. Review and analysis of vertical breakwater failures-lessons learned. Coast. Eng. 22, 3–29 (1994).

    Article  Google Scholar 

  91. 91.

    Mechler, R. & Bouwer, L. M. Understanding trends and projections of disaster losses and climate change: is vulnerability the missing link? Climatic Change 133, 23–35 (2015).

    Article  Google Scholar 

  92. 92.

    Alfieri, L., Feyen, L. & Di Baldassarre, G. Increasing flood risk under Climate Change: a pan-European assessment of the benefits of four adaptation strategies. Climatic Change 136, 507–521 (2016).

    Article  Google Scholar 

  93. 93.

    Ciavola, P., Ferreira, O., Haerens, P., van Koningsveld, M. & Armaroli, C. Storm impacts along European coastlines. Part 2: lessons learned from the MICORE project. Environ. Sci. Policy 14, 924–933 (2011).

    Article  Google Scholar 

  94. 94.

    Jongman, B. et al. Comparative flood damage model assessment: towards a European approach. Nat. Hazards Earth Syst. Sci. 12, 3733–3752 (2012).

    Article  Google Scholar 

  95. 95.

    Richards, J. A. & Nicholls, R. J. Impacts of Climate Change in Coastal Systems in Europe: PESETA–Coastal Systems Study (JRC-IPTS, 2009).

  96. 96.

    Brown, S., Nicholls, R., Vafeidis, A., Hinkel, J. & Watkiss, P. in The ClimateCost Project: Final Repor t Vol. 1 (ed. Watkiss, P.) (Stockholm Environment Institute, 2011).

  97. 97.

    Cavaleri, L. & Bertotti, L. Accuracy of the modelled wind and wave fields in enclosed seas. Tellus 56A, 167–175 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The research that led to these results received funding from the EU Seventh Framework Programme FP7/2007-2013 under grant agreement no. 603864 (HELIX, www.helixclimate.eu), from DG CLIMA of the European Commission as part of the PESETA III project, as well as from the JRC of the European Commission as part of the CoastAlRisk project.

Author information

Affiliations

Authors

Contributions

M.V. and L.F. jointly conceived the study. M.V. and E.V. contributed with the storm surge projections and the tidal elevation projections, and L.M. and M.V. were responsible for the wave projections. M.V. and F.D. carried out the coastal flooding analysis, M.V. and L.F. carried out the impact assessment with the support of A.B., analysed the data and prepared the manuscript, and all the authors discussed results and implications, and commented on the manuscript at all stages.

Corresponding author

Correspondence to Michalis I. Vousdoukas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–2, Supplementary Tables 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vousdoukas, M.I., Mentaschi, L., Voukouvalas, E. et al. Climatic and socioeconomic controls of future coastal flood risk in Europe. Nature Clim Change 8, 776–780 (2018). https://doi.org/10.1038/s41558-018-0260-4

Download citation

Further reading