Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate warming leads to divergent succession of grassland microbial communities


Accurate climate projections require an understanding of the effects of warming on ecological communities and the underlying mechanisms that drive them1,2,3. However, little is known about the effects of climate warming on the succession of microbial communities4,5. Here we examined the temporal succession of soil microbes in a long-term climate change experiment at a tall-grass prairie ecosystem. Experimental warming was found to significantly alter the community structure of bacteria and fungi. By determining the time-decay relationships and the paired differences of microbial communities under warming and ambient conditions, experimental warming was shown to lead to increasingly divergent succession of the soil microbial communities, with possibly higher impacts on fungi than bacteria. Variation partition- and null model-based analyses indicate that stochastic processes played larger roles than deterministic ones in explaining microbial community taxonomic and phylogenetic compositions. However, in warmed soils, the relative importance of stochastic processes decreased over time, indicating a potential deterministic environmental filtering elicited by warming. Although successional trajectories of microbial communities are difficult to predict under future climate change scenarios, their composition and structure are projected to be less variable due to warming-driven selection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The TDRs of fungal and bacterial communities under warming and control conditions.
Fig. 2: TDR values of microbial communities among different phylogenetic groups under warming and control.
Fig. 3: Temporal change in community differences between warming and control conditions.
Fig. 4: Overall community stochasticity under warming and control conditions.


  1. 1.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  2. 2.

    Zhou, J. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2, 106–110 (2012).

    Article  CAS  Google Scholar 

  3. 3.

    Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).

    Article  CAS  Google Scholar 

  4. 4.

    Van Der Gast, C. J., Ager, D. & Lilley, A. K. Temporal scaling of bacterial taxa is influenced by both stochastic and deterministic ecological factors. Environ. Microbiol. 10, 1411–1418 (2008).

    Article  Google Scholar 

  5. 5.

    Adler, P. B. & Lauenroth, W. K. The power of time: spatiotemporal scaling of species diversity. Ecol. Lett. 6, 749–756 (2003).

    Article  Google Scholar 

  6. 6.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  7. 7.

    Chen, I. C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article  CAS  Google Scholar 

  8. 8.

    Sherry, R. A. et al. Divergence of reproductive phenology under climate warming. Proc. Natl Acad. Sci. USA 104, 198–202 (2007).

    Article  CAS  Google Scholar 

  9. 9.

    Berg, M. P. et al. Adapt or disperse: understanding species persistence in a changing world. Glob. Change Biol. 16, 587–598 (2010).

    Article  Google Scholar 

  10. 10.

    Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 6, 595–600 (2016).

    Article  CAS  Google Scholar 

  11. 11.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article  CAS  Google Scholar 

  12. 12.

    Bebber, D. P., Ramotowski, M. A. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).

    Article  Google Scholar 

  13. 13.

    Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).

    Article  CAS  Google Scholar 

  14. 14.

    Prach, K. & Walker, L. R. Four opportunities for studies of ecological succession. Trends Ecol. Evol. 26, 119–123 (2011).

    Article  Google Scholar 

  15. 15.

    Walker, L. R. & Del Moral, R. Primary Succession and Ecosystem Rehabilitation (Cambridge Univ. Press, Cambridge, 2003).

  16. 16.

    Li, S. P. et al. Convergence and divergence in a long‐term old‐field succession: the importance of spatial scale and species abundance. Ecol. Lett. 19, 1101–1109 (2016).

    Article  Google Scholar 

  17. 17.

    Fukami, T., Martijn Bezemer, T., Mortimer, S. R. & Putten, W. H. Species divergence and trait convergence in experimental plant community assembly. Ecol. Lett. 8, 1283–1290 (2005).

    Article  Google Scholar 

  18. 18.

    Inouye, R. S. & Tilman, D. Convergence and divergence of old‐field vegetation after 11 yr of nitrogen addition. Ecology 76, 1872–1887 (1995).

    Article  Google Scholar 

  19. 19.

    Zhou, J. et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl Acad. Sci. USA 111, E836–E845 (2014).

    Article  CAS  Google Scholar 

  20. 20.

    Schleicher, A., Peppler-Lisbach, C. & Kleyer, M. Functional traits during succession: is plant community assembly trait-driven? Preslia 83, 347–370 (2011).

    Google Scholar 

  21. 21.

    Maignien, L., DeForce, E. A., Chafee, M. E., Eren, A. M. & Simmons, S. L. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. MBio 5, e00682-13 (2014).

    Article  CAS  Google Scholar 

  22. 22.

    Veach, A. M., Stegen, J. C., Brown, S. P., Dodds, W. K. & Jumpponen, A. Spatial and successional dynamics of microbial biofilm communities in a grassland stream ecosystem. Mol. Ecol. 25, 4674–4688 (2016).

    Article  CAS  Google Scholar 

  23. 23.

    Nemergut, D. R. et al. Decreases in average bacterial community rRNA operon copy number during succession. ISME J. 10, 1147–1156 (2016).

    Article  CAS  Google Scholar 

  24. 24.

    Xu, X., Sherry, R. A., Niu, S., Li, D. & Luo, Y. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Glob. Change Biol. 19, 2753–2764 (2013).

    Article  Google Scholar 

  25. 25.

    Li, D., Zhou, X., Wu, L., Zhou, J. & Luo, Y. Contrasting responses of heterotrophic and autotrophic respiration to experimental warming in a winter annual-dominated prairie. Glob. Change Biol. 19, 3553–3564 (2013).

    Google Scholar 

  26. 26.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article  Google Scholar 

  27. 27.

    Chen, L.-x et al. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J. 9, 1579–1592 (2015).

    Article  Google Scholar 

  28. 28.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article  Google Scholar 

  29. 29.

    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002-17 (2017).

  30. 30.

    Zhou, J. et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 7, 12083 (2016).

    Article  CAS  Google Scholar 

  31. 31.

    Niu, S. et al. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytol. 177, 209–219 (2008).

    CAS  Google Scholar 

  32. 32.

    Frank, D. A. & McNaughton, S. J. Aboveground biomass estimation with the canopy intercept method: a plant growth form caveat. Oikos 57, 57–60 (1990).

    Article  Google Scholar 

  33. 33.

    Sherry, R. A. et al. Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Glob. Change Biol. 14, 2923–2936 (2008).

    Article  Google Scholar 

  34. 34.

    McLean, E. O. in Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties (ed. Page, A. L.) 199–224 (Soil Science Society of America, Madison, WI, 1982).

  35. 35.

    Zhou, J., Bruns, M. A. & Tiedje, J. M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322 (1996).

    CAS  Google Scholar 

  36. 36.

    Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 15, 125 (2015).

    Article  CAS  Google Scholar 

  37. 37.

    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).

    Article  Google Scholar 

  38. 38.

    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    Article  CAS  Google Scholar 

  39. 39.

    Giardine, B. et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 15, 1451–1455 (2005).

    Article  CAS  Google Scholar 

  40. 40.

    Kong, Y. Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98, 152–153 (2011).

    Article  CAS  Google Scholar 

  41. 41.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Article  CAS  Google Scholar 

  42. 42.

    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    Article  CAS  Google Scholar 

  43. 43.

    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    Article  CAS  Google Scholar 

  44. 44.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article  CAS  Google Scholar 

  45. 45.

    Dixon, P. VEGAN. a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2009).

    Article  Google Scholar 

  46. 46.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS ONE 8, e61217 (2013).

    Article  CAS  Google Scholar 

  47. 47.

    Shade, A., Gregory Caporaso, J., Handelsman, J., Knight, R. & Fierer, N. A meta-analysis of changes in bacterial and archaeal communities with time. ISME J. 7, 1493–1506 (2013).

    Article  Google Scholar 

  48. 48.

    Liang, Y. et al. Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover. ISME J. 9, 2561–2572 (2015).

    Article  Google Scholar 

  49. 49.

    Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).

    Article  Google Scholar 

  50. 50.

    Deng, Y. et al. Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities. Glob. Change Biol. 22, 957–964 (2016).

    Article  Google Scholar 

  51. 51.

    Martiny, J. B., Eisen, J. A., Penn, K., Allison, S. D. & Horner-Devine, M. C. Drivers of bacterial β-diversity depend on spatial scale. Proc. Natl Acad. Sci. USA 108, 7850–7854 (2011).

    Article  Google Scholar 

  52. 52.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 289–300 (1995).

  53. 53.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2011).

  54. 54.

    Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Phil. Trans. R. Soc. B 366, 2351–2363 (2011).

    Article  Google Scholar 

  55. 55.

    Stegen, J. C., Lin, X., Konopka, A. E. & Fredrickson, J. K. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6, 1653–1664 (2012).

    Article  CAS  Google Scholar 

  56. 56.

    Kruskal, J. B. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115–129 (1964).

    Article  Google Scholar 

Download references


This work is supported by the US Department of Energy, Office of Science, Genomic Science Program under award numbers DE-SC0004601 and DE-SC0010715, the National Science Foundation of China (no. 41430856) and the Office of the Vice President for Research at the University of Oklahoma. X.G. and X.Z. were generously supported by the China Scholarship Council (CSC).

Author information




All authors contributed intellectual input and assistance to this study and manuscript preparation. The original concept and experimental strategy were developed by J.Z., Y.L. and J.M.T. Field management was carried out by J.F., M.Y., Z.S., X.Z., X.G., T.Y., L.W., J.W., A.Z. and J.D.V.N. Sampling collections, DNA preparation and MiSeq sequencing analysis were carried out by X.G., J.F., X.Z., M.Y., X.T., Y.F. and L.H. Soil chemical analysis was carried out by X.Z. Various statistical analyses were carried by X.G., Z.S., D.N., Y.Q. and M.Y. Assistance in data interpretation was provided by X.L., Y.Y. and Z.H. All data analysis and integration were guided by J.Z. The paper was written by J.Z. and X.G. with help from Z.H., Y.Y., L.H. and J.M.T.

Corresponding authors

Correspondence to Yunfeng Yang or Jizhong Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary figures 1–11, Supplementary tables 1–8

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Feng, J., Shi, Z. et al. Climate warming leads to divergent succession of grassland microbial communities. Nature Clim Change 8, 813–818 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing