Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pacific contribution to the early twentieth-century warming in the Arctic


Arctic surface temperature warmed more than twice as fast as global temperature during the early twentieth century, similar to that during the recent global warming. This Arctic warming has been attributed to both external forcing1 and internal variability associated with atmospheric dynamics2,3 and Atlantic Ocean temperature4 in combination with Pacific variability5. Here we show, through coupled climate model experiments that superpose externally forced and dynamically driven changes, that Pacific decadal variability alone was a key contributor to the early twentieth century Arctic warming. Sea surface temperatures in the model are phased to observations by prescribing historical wind variations over the Pacific, which drive thermodynamically consistent decadal variations. During the early twentieth century, the Pacific Decadal Oscillation (PDO) transitioned to a positive phase with a concomitant deepening of the Aleutian Low that warms the Arctic by poleward low-level advection of extratropical air. In addition, our experiments revealed that the implemented Pacific surface changes weaken the polar vortex, which leads to subsidence-induced adiabatic heating of the Arctic surface. Thus, our results suggest that the observed recent shift to the positive PDO phase6 will intensify Arctic warming in the forthcoming decades.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Arctic surface temperature.
Fig. 2: Change in surface temperature and SLP.
Fig. 3: Change in vertical temperature and geopotential height (GPH) in the Arctic.
Fig. 4: Geopotential height (GPH).
Fig. 5: Additional experiments.


  1. 1.

    Suo, L., Otterå, O. H., Gao, Y. & Johannessen, O. M. External forcing of the early 20th century Arctic warming. Tellus 65, 20578 (2013).

    Article  Google Scholar 

  2. 2.

    Wang, M. et al. Intrinsic versus forced variation in coupled climate model simulations over the Arctic during the twentieth century. J. Clim. 20, 1093–1107 (2007).

    Article  Google Scholar 

  3. 3.

    Bengtsson, L., Semenov, V. A. & Johannessen, O. M. The early twentieth-century warming in the Arctic—a possible mechanism. J. Clim. 17, 4045–4057 (2004).

    Article  Google Scholar 

  4. 4.

    Johannessen, O. M., Kuzmina, S. I., Bobylev, L. P. & Miles, M. Surface air temperature variability and trends in the Arctic: new amplification assessment and regionalisation. Tellus 68, 28234 (2016).

    Article  Google Scholar 

  5. 5.

    Tokinaga, H., Xie, S.-P. & Mukougawa, H. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc. Natl Acad. Sci. 114, 6227–6232 (2016).

    Article  CAS  Google Scholar 

  6. 6.

    Screen, J. A. & Francis, J. A. Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Clim. Change 6, 856–860 (2016).

    Article  Google Scholar 

  7. 7.

    Tett, S. F. B., Stott, P. A., Allen, M. R., Ingram, W. J. & Mitchell, J. F. B. Causes of twentieth-century temperature change near the Earth’s surface. Nature 399, 569–572 (1999).

    Article  CAS  Google Scholar 

  8. 8.

    Delworth, T. L. & Knutson, T. R. Simulation of early 20th century global warming. Science 287, 2246–2250 (2000).

    Article  CAS  Google Scholar 

  9. 9.

    Schlesinger, M. E. & Ramankutty, N. An oscillation in the global climate system of period 65-70 years. Nature 367, 723–726 (1994).

    Article  Google Scholar 

  10. 10.

    Kosaka, Y. & Xie, S.-P. The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci. 9, 669–673 (2016).

    Article  CAS  Google Scholar 

  11. 11.

    Steinman, B. A., Mann, M. E. & Miller, S. K. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science 347, 988–991 (2015).

    Article  CAS  Google Scholar 

  12. 12.

    Dai, A., Fyfe, J. C., Xie, S.-P. & Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Change 5, 555–559 (2015).

    Article  Google Scholar 

  13. 13.

    Thompson, D. M., Cole, J. E., Shen, G. T., Tudhope, A. W. & Meehl, G. A. Early twentieth-century warming linked to tropical Pacific wind strength. Nat. Geosci. 8, 117–121 (2015).

    Article  CAS  Google Scholar 

  14. 14.

    Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article  CAS  Google Scholar 

  15. 15.

    Hu, C. et al. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin. Nat. Commun. 7, 11721 (2016).

    Article  CAS  Google Scholar 

  16. 16.

    Li, F., Wang, H. & Gao, Y. Extratropical ocean warming and winter Arctic sea ice cover since the 1990s. J. Clim. 28, 5510–5522 (2015).

    Article  Google Scholar 

  17. 17.

    Bentsen, M. et al. The Norwegian Earth System Model, NorESM1-M - Part 1: description and basic evaluation of the physical climate. Geosci. Model Dev. 6, 687–720 (2013).

    Article  Google Scholar 

  18. 18.

    Ding, H. et al. The variability of the East Asian summer monsoon and its relationship to ENSO in a partially coupled climate model. Clim. Dynam. 42, 367–379 (2014).

    Article  Google Scholar 

  19. 19.

    Compo, G. P. et al. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011).

    Article  Google Scholar 

  20. 20.

    Trenberth, K. E. & Hurrell, J. W. Decadal atmosphere-ocean variations in the Pacific. Clim. Dynam. 9, 303–319 (1994).

    Article  Google Scholar 

  21. 21.

    Hetzinger, S. et al. Marine proxy evidence linking decadal North Pacific and Atlantic climate. Clim. Dynam. 39, 1447–1455 (2012).

    Article  Google Scholar 

  22. 22.

    Sein, D. V., Koldunov, N. V., Pinto, J. G. & Cabos, W. Sensitivity of simulated regional Arctic climate to the choice of coupled model domain. Tellus 66, 23966 (2014).

    Article  Google Scholar 

  23. 23.

    Ambaum, M. H. P. & Hoskins, B. J. The NAO troposphere–stratosphere connection. J. Clim. 15, 1969–1978 (2002).

    Article  Google Scholar 

  24. 24.

    Haynes, P. Stratospheric dynamics. Ann. Rev. Fluid Mech. 37, 263–293 (2005).

    Article  Google Scholar 

  25. 25.

    Ineson, S. & Scaife, A. A. The role of the stratosphere in the European climate response to El Niño. Nat. Geosci. 2, 32–36 (2008).

    Article  CAS  Google Scholar 

  26. 26.

    Allan, R. & Ansell, T. A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Clim. 19, 5816–5842 (2006).

    Article  Google Scholar 

  27. 27.

    Zhang, R. & Delworth, T.L. Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability. Geophys. Res. Lett. 34, L23708 (2007).

    Google Scholar 

  28. 28.

    Otterå, O. H., Bentsen, M., Drange, H. & Suo, L. External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci. 3, 688–694 (2010).

    Article  CAS  Google Scholar 

  29. 29.

    Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Article  Google Scholar 

  30. 30.

    Lindsay, K. et al. Preindustrial-control and twentieth-century carbon cycle experiments with the Earth System Model CESM1(BGC). J. Clim. 27, 8981–9005 (2014).

    Article  Google Scholar 

  31. 31.

    Bleck, R., Rooth, C., Hu, D. M. & Smith, L. T. Salinity-driven thermocline transients in a wind-forced and thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr. 22, 1486–1505 (1992).

    Article  Google Scholar 

  32. 32.

    Iversen, T. et al. The Norwegian Earth System Model, NorESM1-M. Part 2: climate response and scenario projections. Geosci. Model Dev. 6, 389–415 (2013).

    Article  Google Scholar 

  33. 33.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5 (2011).

    Article  Google Scholar 

  34. 34.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An Overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  35. 35.

    Alexander, M. A. et al. The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Clim. 15, 2205–2231 (2002).

    Article  Google Scholar 

  36. 36.

    Newman, M. et al. The Pacific Decadal Oscillation, revisited. J. Clim. 29, 4399–4427 (2016).

    Article  Google Scholar 

  37. 37.

    Smith, T. M. & Reynolds, R. W. Improved extended reconstruction of SST (1854–1997). J. Clim 17, 2466–2477 (2004).

    Article  Google Scholar 

  38. 38.

    Bronnimann, S. Early twentieth-century warming. Nat. Geosci. 2, 735–736 (2009).

    Article  CAS  Google Scholar 

  39. 39.

    He, Y.-C., Drange, H., Gao, Y. & Bentsen, M. Simulated Atlantic meridional overturning circulation in the 20th century with an ocean model forced by reanalysis-based atmospheric data sets. Ocean Model. 100, 31–48 (2016).

    Article  Google Scholar 

  40. 40.

    Huang, B. et al. Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2015).

    Article  Google Scholar 

  41. 41.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    Article  Google Scholar 

  42. 42.

    Rhoder, et al. Berkeley Earth temperature averaging Process. Geoinfor. Geostat. 1, 2 (2013).

    Google Scholar 

  43. 43.

    Kuzmina, S. I., Johannessen, O. M., Bengtsson, L., Aniskina, O. G. & Bobylev, L. P. High northern latitude surface air temperature: comparison of existing data and creation of a new gridded data set 1900–2000. Tellus 60A, 289–304 (2008).

    Article  Google Scholar 

Download references


This research was supported by the JPI-Climate/Belmont Forum project InterDec, the Research Council of Norway through the EPOCASA (no. 229774) project, the ERC STERCP project (Grant Agreement no. 648982), and UNINETT Sigma2 with CPU (nn9039k) and storage (ns9039k) resources.

Author information




L.S. and I.B. performed the experiments. L.S. performed the analysis and wrote the manuscript. All authors contributed to the discussion, interpretation of the results and editing of the manuscript.

Corresponding author

Correspondence to Lea Svendsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures 1–9

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Svendsen, L., Keenlyside, N., Bethke, I. et al. Pacific contribution to the early twentieth-century warming in the Arctic. Nature Clim Change 8, 793–797 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing