Letter | Published:

Pacific contribution to the early twentieth-century warming in the Arctic

Nature Climate Changevolume 8pages793797 (2018) | Download Citation


Arctic surface temperature warmed more than twice as fast as global temperature during the early twentieth century, similar to that during the recent global warming. This Arctic warming has been attributed to both external forcing1 and internal variability associated with atmospheric dynamics2,3 and Atlantic Ocean temperature4 in combination with Pacific variability5. Here we show, through coupled climate model experiments that superpose externally forced and dynamically driven changes, that Pacific decadal variability alone was a key contributor to the early twentieth century Arctic warming. Sea surface temperatures in the model are phased to observations by prescribing historical wind variations over the Pacific, which drive thermodynamically consistent decadal variations. During the early twentieth century, the Pacific Decadal Oscillation (PDO) transitioned to a positive phase with a concomitant deepening of the Aleutian Low that warms the Arctic by poleward low-level advection of extratropical air. In addition, our experiments revealed that the implemented Pacific surface changes weaken the polar vortex, which leads to subsidence-induced adiabatic heating of the Arctic surface. Thus, our results suggest that the observed recent shift to the positive PDO phase6 will intensify Arctic warming in the forthcoming decades.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Suo, L., Otterå, O. H., Gao, Y. & Johannessen, O. M. External forcing of the early 20th century Arctic warming. Tellus 65, 20578 (2013).

  2. 2.

    Wang, M. et al. Intrinsic versus forced variation in coupled climate model simulations over the Arctic during the twentieth century. J. Clim. 20, 1093–1107 (2007).

  3. 3.

    Bengtsson, L., Semenov, V. A. & Johannessen, O. M. The early twentieth-century warming in the Arctic—a possible mechanism. J. Clim. 17, 4045–4057 (2004).

  4. 4.

    Johannessen, O. M., Kuzmina, S. I., Bobylev, L. P. & Miles, M. Surface air temperature variability and trends in the Arctic: new amplification assessment and regionalisation. Tellus 68, 28234 (2016).

  5. 5.

    Tokinaga, H., Xie, S.-P. & Mukougawa, H. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc. Natl Acad. Sci. 114, 6227–6232 (2016).

  6. 6.

    Screen, J. A. & Francis, J. A. Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Clim. Change 6, 856–860 (2016).

  7. 7.

    Tett, S. F. B., Stott, P. A., Allen, M. R., Ingram, W. J. & Mitchell, J. F. B. Causes of twentieth-century temperature change near the Earth’s surface. Nature 399, 569–572 (1999).

  8. 8.

    Delworth, T. L. & Knutson, T. R. Simulation of early 20th century global warming. Science 287, 2246–2250 (2000).

  9. 9.

    Schlesinger, M. E. & Ramankutty, N. An oscillation in the global climate system of period 65-70 years. Nature 367, 723–726 (1994).

  10. 10.

    Kosaka, Y. & Xie, S.-P. The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci. 9, 669–673 (2016).

  11. 11.

    Steinman, B. A., Mann, M. E. & Miller, S. K. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science 347, 988–991 (2015).

  12. 12.

    Dai, A., Fyfe, J. C., Xie, S.-P. & Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Change 5, 555–559 (2015).

  13. 13.

    Thompson, D. M., Cole, J. E., Shen, G. T., Tudhope, A. W. & Meehl, G. A. Early twentieth-century warming linked to tropical Pacific wind strength. Nat. Geosci. 8, 117–121 (2015).

  14. 14.

    Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

  15. 15.

    Hu, C. et al. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin. Nat. Commun. 7, 11721 (2016).

  16. 16.

    Li, F., Wang, H. & Gao, Y. Extratropical ocean warming and winter Arctic sea ice cover since the 1990s. J. Clim. 28, 5510–5522 (2015).

  17. 17.

    Bentsen, M. et al. The Norwegian Earth System Model, NorESM1-M - Part 1: description and basic evaluation of the physical climate. Geosci. Model Dev. 6, 687–720 (2013).

  18. 18.

    Ding, H. et al. The variability of the East Asian summer monsoon and its relationship to ENSO in a partially coupled climate model. Clim. Dynam. 42, 367–379 (2014).

  19. 19.

    Compo, G. P. et al. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011).

  20. 20.

    Trenberth, K. E. & Hurrell, J. W. Decadal atmosphere-ocean variations in the Pacific. Clim. Dynam. 9, 303–319 (1994).

  21. 21.

    Hetzinger, S. et al. Marine proxy evidence linking decadal North Pacific and Atlantic climate. Clim. Dynam. 39, 1447–1455 (2012).

  22. 22.

    Sein, D. V., Koldunov, N. V., Pinto, J. G. & Cabos, W. Sensitivity of simulated regional Arctic climate to the choice of coupled model domain. Tellus 66, 23966 (2014).

  23. 23.

    Ambaum, M. H. P. & Hoskins, B. J. The NAO troposphere–stratosphere connection. J. Clim. 15, 1969–1978 (2002).

  24. 24.

    Haynes, P. Stratospheric dynamics. Ann. Rev. Fluid Mech. 37, 263–293 (2005).

  25. 25.

    Ineson, S. & Scaife, A. A. The role of the stratosphere in the European climate response to El Niño. Nat. Geosci. 2, 32–36 (2008).

  26. 26.

    Allan, R. & Ansell, T. A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Clim. 19, 5816–5842 (2006).

  27. 27.

    Zhang, R. & Delworth, T.L. Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability. Geophys. Res. Lett. 34, L23708 (2007).

  28. 28.

    Otterå, O. H., Bentsen, M., Drange, H. & Suo, L. External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci. 3, 688–694 (2010).

  29. 29.

    Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

  30. 30.

    Lindsay, K. et al. Preindustrial-control and twentieth-century carbon cycle experiments with the Earth System Model CESM1(BGC). J. Clim. 27, 8981–9005 (2014).

  31. 31.

    Bleck, R., Rooth, C., Hu, D. M. & Smith, L. T. Salinity-driven thermocline transients in a wind-forced and thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr. 22, 1486–1505 (1992).

  32. 32.

    Iversen, T. et al. The Norwegian Earth System Model, NorESM1-M. Part 2: climate response and scenario projections. Geosci. Model Dev. 6, 389–415 (2013).

  33. 33.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5 (2011).

  34. 34.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An Overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

  35. 35.

    Alexander, M. A. et al. The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Clim. 15, 2205–2231 (2002).

  36. 36.

    Newman, M. et al. The Pacific Decadal Oscillation, revisited. J. Clim. 29, 4399–4427 (2016).

  37. 37.

    Smith, T. M. & Reynolds, R. W. Improved extended reconstruction of SST (1854–1997). J. Clim 17, 2466–2477 (2004).

  38. 38.

    Bronnimann, S. Early twentieth-century warming. Nat. Geosci. 2, 735–736 (2009).

  39. 39.

    He, Y.-C., Drange, H., Gao, Y. & Bentsen, M. Simulated Atlantic meridional overturning circulation in the 20th century with an ocean model forced by reanalysis-based atmospheric data sets. Ocean Model. 100, 31–48 (2016).

  40. 40.

    Huang, B. et al. Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2015).

  41. 41.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

  42. 42.

    Rhoder, et al. Berkeley Earth temperature averaging Process. Geoinfor. Geostat. 1, 2 (2013).

  43. 43.

    Kuzmina, S. I., Johannessen, O. M., Bengtsson, L., Aniskina, O. G. & Bobylev, L. P. High northern latitude surface air temperature: comparison of existing data and creation of a new gridded data set 1900–2000. Tellus 60A, 289–304 (2008).

Download references


This research was supported by the JPI-Climate/Belmont Forum project InterDec, the Research Council of Norway through the EPOCASA (no. 229774) project, the ERC STERCP project (Grant Agreement no. 648982), and UNINETT Sigma2 with CPU (nn9039k) and storage (ns9039k) resources.

Author information


  1. Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

    • Lea Svendsen
    • , Noel Keenlyside
    •  & Nour-Eddine Omrani
  2. Nansen Environmental and Remote Sensing Center and Bjerknes Centre for Climate Research, Bergen, Norway

    • Noel Keenlyside
    •  & Yongqi Gao
  3. Uni Research Climate and Bjerknes Centre for Climate Research, Bergen, Norway

    • Ingo Bethke
  4. Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China

    • Yongqi Gao


  1. Search for Lea Svendsen in:

  2. Search for Noel Keenlyside in:

  3. Search for Ingo Bethke in:

  4. Search for Yongqi Gao in:

  5. Search for Nour-Eddine Omrani in:


L.S. and I.B. performed the experiments. L.S. performed the analysis and wrote the manuscript. All authors contributed to the discussion, interpretation of the results and editing of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Lea Svendsen.

Supplementary information

  1. Supplementary Information

    Supplementary figures 1–9

About this article

Publication history




Issue Date