Temperature scaling studies suggest that hourly rainfall magnitudes might increase beyond thermodynamic expectations with global warming1,2,3; that is, above the Clausius–Clapeyron (CC) rate of ~6.5% °C−1. However, there is limited evidence of such increases in long-term observations. Here, we calculate continental-average changes in the magnitude and frequency of extreme hourly and daily rainfall observations from Australia over the years 1990–2013 and 1966–1989. Observed changes are compared with the uncertainty from natural variability and expected changes from CC scaling as a result of global mean surface temperature change. We show that increases in daily rainfall extremes are consistent with CC scaling, but are within the range of natural variability. In contrast, changes in the magnitude of hourly rainfall extremes are close to or exceed double the expected CC scaling, and are above the range of natural variability, exceeding CC × 3 in the tropical region (north of 23° S). These continental-scale changes in extreme rainfall are not explained by changes in the El Niño–Southern Oscillation or changes in the seasonality of extremes. Our results indicate that CC scaling on temperature provides a severe underestimate of observed changes in hourly rainfall extremes in Australia, with implications for assessing the impacts of extreme rainfall.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Lenderink, G., Mok, H. Y., Lee, T. C. & Van Oldenborgh, G. J. Scaling and trends of hourly precipitation extremes in two different climate zones—Hong Kong and the Netherlands. Hydrol. Earth Syst. Sci. 15, 3033–3041 (2011).

  2. 2.

    Lenderink, G. & Van Meijgaard, E. Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett. 5, 025208 (2010).

  3. 3.

    Berg, P., Moseley, C. & Haerter, J. O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 6, 181–185 (2013).

  4. 4.

    Allan, R. P. & Soden, B. J. Atmospheric warming and the amplification of precipitation extremes. Science 321, 1481–1484 (2008).

  5. 5.

    Pfahl, S., Ogorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7, 423–427 (2017).

  6. 6.

    Donat, M. G. et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J. Geophys. Res. Atmos. 118, 2098–2118 (2013).

  7. 7.

    Westra, S., Alexander, L. V. & Zwiers, F. W. Global increasing trends in annual maximum daily precipitation. J. Clim. 26, 3904–3918 (2013).

  8. 8.

    Min, S.-K., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).

  9. 9.

    Westra, S. & Sisson, S. A. Detection of non-stationarity in precipitation extremes using a max-stable process model. J. Hydrol. 406, 119–128 (2011).

  10. 10.

    Barbero, R., Fowler, H. J., Lenderink, G. & Blenkinsop, S. Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions? Geophys. Res. Lett. 44, 974–983 (2017).

  11. 11.

    Lenderink, G. & Fowler, H. J. Hydroclimate: understanding rainfall extremes. Nat. Clim. Change 7, 391–393 (2017).

  12. 12.

    Zhang, X., Zwiers, F. W., Li, G., Wan, H. & Cannon, A. J. Complexity in estimating past and future extreme short-duration rainfall. Nat. Geosci. 10, 255–259 (2017).

  13. 13.

    Lenderink, G., Barbero, R., Loriaux, J. M. & Fowler, H. J. Super-Clausius–Clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions. J. Clim. 30, 6037–6052 (2017).

  14. 14.

    Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).

  15. 15.

    Utsumi, N., Seto, S., Kanae, S., Maeda, E. E. & Oki, T. Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett. 38, L16708 (2011).

  16. 16.

    Hardwick Jones, R., Westra, S. & Sharma, A. Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett. 37, L22805 (2010).

  17. 17.

    Kendon, E. J. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 4, 570–576 (2014).

  18. 18.

    Prein, A. F. et al. The future intensification of hourly precipitation extremes. Nat. Clim. Change 7, 48–52 (2017).

  19. 19.

    Loriaux, J. M., Lenderink, G. & Siebesma, A. P. Large-scale controls on extreme precipitation. J. Clim. 30, 955–968 (2017).

  20. 20.

    Bao, J., Sherwood, S. C., Alexander, L. V. & Evans, J. P. Future increases in extreme precipitation exceed observed scaling rates. Nat. Clim. Change 7, 128–132 (2017).

  21. 21.

    Chan, S. C., Kendon, E. J., Roberts, N. M., Fowler, H. J. & Blenkinsop, S. Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci. 9, 24–28 (2016).

  22. 22.

    Lochbihler, K., Lenderink, G. & Siebesma, A. P. The spatial extent of rainfall events and its relation to precipitation scaling. Geophys. Res. Lett. 44, 8629–8636 (2017).

  23. 23.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  24. 24.

    Fischer, E. M. & Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Change 6, 986–991 (2016).

  25. 25.

    Blenkinsop, S., Chan, S. C., Kendon, E. J., Roberts, N. M. & Fowler, H. J. Temperature influences on intense UK hourly precipitation and dependency on large-scale circulation. Environ. Res. Lett. 10, 054021 (2015).

  26. 26.

    Zheng, F., Westra, S. & Leonard, M. Opposing local precipitation extremes. Nat. Clim. Change 5, 389–390 (2015).

  27. 27.

    Barbero, R., Westra, S., Lenderink, G. & Fowler, H. J. Temperature–extreme precipitation scaling: a two-way causality? Int. J. Climatol. 38, e1274–e1279 (2018).

  28. 28.

    Risbey, J. S., Pook, M. J., McIntosh, P. C., Wheeler, M. C. & Hendon, H. H. On the remote drivers of rainfall variability in Australia. Mon. Weather Rev. 137, 3233–3253 (2009).

  29. 29.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

  30. 30.

    Pendergrass, A. G. What precipitation is extreme? Science 360, 1072–1073 (2018).

  31. 31.

    Wasko, C. & Sharma, A. Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat. Geosci. 8, 527–529 (2015).

  32. 32.

    Wasko, C., Sharma, A. & Westra, S. Reduced spatial extent of extreme storms at higher temperatures. Geophys. Res. Lett. 43, 4026–4032 (2016).

  33. 33.

    Schär, C. et al. Percentile indices for assessing changes in heavy precipitation events. Clim. Change 137, 201–216 (2016).

  34. 34.

    GISTEMP Team ISS Surface Temperature Analysis (GISTEMP) (NASA Goddard Institute for Space Studies, 2017); https://data.giss.nasa.gov/gistemp/

  35. 35.

    Hanson, S. et al. A global ranking of port cities with high exposure to climate extremes. Clim. Change 104, 89–111 (2011).

  36. 36.

    Equatorial Pacific Sea Surface Temperatures (NOAA, 2017); https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst.php

Download references


This work was supported by the INTENSE project. INTENSE is supported by the European Research Council (grant ERC-2013-CoG-617329). H.F. is funded by the Wolfson Foundation and Royal Society as a Royal Society Wolfson Research Merit Award holder (grant WM140025). S.W. is supported by Australian Research Council Discovery project DP150100411.

Author information


  1. School of Engineering, Newcastle University, Newcastle, UK

    • Selma B. Guerreiro
    • , Hayley J. Fowler
    • , Renaud Barbero
    • , Stephen Blenkinsop
    • , Elizabeth Lewis
    •  & Xiao-Feng Li
  2. Irstea, Mediterranean Ecosystems and Risks, Aix-en-Provence, France

    • Renaud Barbero
  3. School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, South Australia, Australia

    • Seth Westra
  4. Royal Netherlands Meteorological Institute, De Bilt, The Netherlands

    • Geert Lenderink


  1. Search for Selma B. Guerreiro in:

  2. Search for Hayley J. Fowler in:

  3. Search for Renaud Barbero in:

  4. Search for Seth Westra in:

  5. Search for Geert Lenderink in:

  6. Search for Stephen Blenkinsop in:

  7. Search for Elizabeth Lewis in:

  8. Search for Xiao-Feng Li in:


S.B.G. carried out the analysis. S.B.G., H.J.F. and R.B. contributed to the design of the methodology. All authors discussed the results and contributed to writing the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Selma B. Guerreiro.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–15, Supplementary Tables 1 & 2, Supplementary References

About this article

Publication history




Issue Date