Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Threat of climate change on a songbird population through its impacts on breeding


Understanding global change processes that threaten species viability is critical for assessing vulnerability and deciding on appropriate conservation actions1. Here we combine individual-based2 and metapopulation models to estimate the effects of climate change on annual breeding productivity and population viability up to 2100 of a common forest songbird, the Acadian flycatcher (Empidonax virescens), across the Central Hardwoods ecoregion, a 39.5-million-hectare area of temperate and broadleaf forests in the USA. Our approach integrates local-scale, individual breeding productivity, estimated from empirically derived demographic parameters that vary with landscape and climatic factors (such as forest cover, daily temperature)3, into a dynamic-landscape metapopulation model4 that projects growth of the regional population over time. We show that warming temperatures under a worst-case scenario with unabated climate change could reduce breeding productivity to an extent that this currently abundant species will suffer population declines substantial enough to pose a significant risk of quasi-extinction from the region in the twenty-first century. However, we also show that this risk is greatly reduced for scenarios where emissions and warming are curtailed. These results highlight the importance of considering both direct and indirect effects of climate change when assessing the vulnerability of species.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Location of the Central Hardwoods region in the USA.
Fig. 2: Projected mean daily maximum temperatures and estimated mean annual productivity of Acadian flycatchers.
Fig. 3: Predicted annual productivity for Acadian flycatchers in territories throughout the Central Hardwoods under climate change.
Fig. 4: Projected declines of the population of Acadian flycatchers in the Central Hardwoods under future climate change.


  1. 1.

    Akçakaya, H. R., Butchart, S. H. M., Watson, J. E. M. & Pearson, R. G. Preventing species extinctions resulting from climate change. Nat. Clim. Change 4, 1048–1049 (2014).

    Google Scholar 

  2. 2.

    Grimm, V. & Railsback, S. F. Individual-Based Modeling and Ecology (Princeton Univ. Press, Princeton, NJ, 2013).

  3. 3.

    Cox, W. A., Thompson, F. R.III, Reidy, J. L. & Faaborg, J. Temperature can interact with landscape factors to affect songbird productivity. Glob. Change Biol. 19, 1064–1074 (2013).

    Google Scholar 

  4. 4.

    Bonnot, T. W., Thompson, F. R.III & Millspaugh, J. J. Dynamic-landscape metapopulation models reveal species-specific population responses to landscapes projected under climate change. Ecosphere 8, e01890 (2017).

    Google Scholar 

  5. 5.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 271–359 (Cambridge Univ. Press, 2014).

  6. 6.

    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. 40, 677–697 (2009).

    Google Scholar 

  7. 7.

    Iverson, L. R. et al. Multi-model comparison on the effects of climate change on tree species in the eastern U.S.: results from an enhanced niche model and process-based ecosystem and landscape models. Landscape Ecol. 32, 1327–1346 (2016).

    Google Scholar 

  8. 8.

    Moritz, C. & Agudo, R. The future of species under climate change: resilience or decline? Science 341, 504–508 (2013).

    CAS  Google Scholar 

  9. 9.

    Ralston, J., DeLuca, W. V., Feldman, R. E. & King, D. I. Realized climate niche breadth varies with population trend and distribution in North American birds. Glob. Ecol. Biogeogr. 25, 1173–1180 (2016).

    Google Scholar 

  10. 10.

    Wang, W. J., He, H. S., Thompson, F. R., Fraser, J. S. & Dijak, W. D. Landscape- and regional-scale shifts in forest composition under climate change in the Central Hardwood Region of the United States. Landsc. Ecol. 31, 149–163 (2016).

    Google Scholar 

  11. 11.

    Willis, S. G. et al. Integrating climate change vulnerability assessments from species distribution models and trait-based approaches. Biol. Conserv. 190, 167–178 (2015).

    Google Scholar 

  12. 12.

    Townsend, A. K. et al. The interacting effects of food, spring temperature, and global climate cycles on population dynamics of a migratory songbird. Glob. Change Biol. 22, 544–555 (2016).

    Google Scholar 

  13. 13.

    Cox, W. A., Thompson, F. R. & Reidy, J. L. The effects of temperature on nest predation by mammals, birds, and snakes. Auk 130, 784–790 (2013).

    Google Scholar 

  14. 14.

    George, A. D., Thompson, F. R. & Faaborg, J. Isolating weather effects from seasonal activity patterns of a temperate North American Colubrid. Oecologia 178, 1251–1259 (2015).

    Google Scholar 

  15. 15.

    Weatherhead, P. J., Sperry, J. H., Carfagno, G. L. F. & Blouin-Demers, G. Latitudinal variation in thermal ecology of North American ratsnakes and its implications for the effect of climate warming on snakes. J. Therm. Biol. 37, 273–281 (2012).

    Google Scholar 

  16. 16.

    Evans, M. E. K., Merow, C., Record, S., McMahon, S. M. & Enquist, B. J. Towards process-based range modeling of many species. Trends Ecol. Evol. 31, 860–871 (2016).

    Google Scholar 

  17. 17.

    Beever, E. A. et al. Improving conservation outcomes with a new paradigm for understanding species’ fundamental and realized adaptive capacity. Conserv. Lett. 9, 131–137 (2016).

    Google Scholar 

  18. 18.

    Lany, N. K. et al. Breeding timed to maximize reproductive success for a migratory songbird: the importance of phenological asynchrony. Oikos 125, 656–666 (2016).

    Google Scholar 

  19. 19.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  20. 20.

    Fordham, D. A. et al. Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nat. Clim. Change 3, 899–903 (2013).

    Google Scholar 

  21. 21.

    Hunter, C. M. et al. Climate change threatens polar bear populations: a stochastic demographic analysis. Ecology 91, 2883–2897 (2010).

    Google Scholar 

  22. 22.

    Selwood, K. E., McGeoch, M. A. & Mac Nally, R. The effects of climate change and land-use change on demographic rates and population viability. Biol. Rev. Camb. Philos. Soc. 90, 837–853 (2015).

    Google Scholar 

  23. 23.

    Tanner, E. P. et al. Extreme climatic events constrain space use and survival of a ground-nesting bird. Glob. Chang Biol. 23, 1832–1846 (2017).

    Google Scholar 

  24. 24.

    Dijak, W. D. et al. Revision and application of the LINKAGES model to simulate forest growth in central hardwood landscapes in response to climate change. Landscape Ecol. 32, 1365–1384 (2016).

    Google Scholar 

  25. 25.

    Jørgensen, P. S. et al. Continent-scale global change attribution in European birds—combining annual and decadal time scales. Glob. Change Biol. 22, 530–543 (2016).

    Google Scholar 

  26. 26.

    Bonnot, T. W., Thompson, F. R. & Millspaugh, J. J. Extension of landscape-based population viability models to ecoregional scales for conservation planning. Biol. Conserv. 144, 2041–2053 (2011).

    Google Scholar 

  27. 27.

    Rushing, C. S. et al. Spatial and temporal drivers of avian population dynamics across the annual cycle. Ecology 98, 2837–2850 (2017).

    Google Scholar 

  28. 28.

    Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl Acad. Sci. USA 114, 8951–8956 (2017).

    CAS  Google Scholar 

  29. 29.

    Bonnot, T. W., Thompson, F. R., Millspaugh, J. J. & Jones-Farrand, D. T. Landscape-based population viability models demonstrate importance of strategic conservation planning for birds. Biol. Conserv. 165, 104–114 (2013).

    Google Scholar 

  30. 30.

    Cox, W. A., Thompson, F. R. III, Root, B. & Faaborg, J. Declining brown-headed cowbird (Molothrus ater) populations are associated with landscape-specific reductions in brood parasitism and increases in songbird productivity. PLoS One 7, e47591 (2012).

    CAS  Google Scholar 

  31. 31.

    Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

    CAS  Google Scholar 

  32. 32.

    Cleland D. T. et al. Ecological Subregions: Sections and Subsections for the Conterminous United States. Gen. Tech. Report WO-76D (cartographer Sloan, A. M.) presentation scale 1:3,500,000; coloured (US Department of Agriculture, Forest Service, 2007).

  33. 33.

    Livneh, B. et al. A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: update and extensions. J. Clim. 26, 9384–9392 (2013).

    Google Scholar 

  34. 34.

    Whitehead, D. R. & Taylor, T. Acadian flycatcher (Empidonax virescens) The Birds of North America

  35. 35.

    Askins, R. A., Lynch, J. F. & Greenberg, R. Population declines in migratory birds in eastern North America. Curr. Ornithol. 7, 1–57 (1990).

    Google Scholar 

  36. 36.

    Freemark, K. E. & Collins, B. S. in Ecology and Conservation of Neotropical Migrant Landbirds (eds Hagan, J. M. III & Johnston, D. W.) 443–454 (Smithsonian Institution Press, Washington, DC, 1992).

  37. 37.

    Robinson, S. K., Thompson, F. R. III, Donovan, T. M., Whitehead, D. R. & Faaborg, J. Regional forest fragmentation and the nesting success of migratory birds. Science 267, 1987–1990 (1995).

    CAS  Google Scholar 

  38. 38.

    Sauer, J. R. et al. The North American Breeding Bird Survey, Results and Analysis 1966–2015 v.2.07.2017 (USGS Patuxent Wildlife Research Center, 2017).

  39. 39.

    Mattsson, B. J., Cooper, R. J. & Handel, C. Which life-history components determine breeding productivity for individual songbirds? A case study of the Louisiana waterthrush (Seiurus motacilla). Auk 124, 1186–1200 (2007).

    Google Scholar 

  40. 40.

    Powell, L. A., Conroy, M. J., Krementz, D. G. & Lang, J. D. A model to predict breeding-season productivity for multibrooded songbirds. Auk 116, 1001–1008 (1999).

    Google Scholar 

  41. 41.

    Hirsch-Jacobson, R. Population Dynamics of a Migrant Songbird: Do We Need to Monitor the Entire Breeding Season? PhD thesis, Univ. Missouri (2011).

  42. 42.

    Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with Preceding Information, and Summary of User Needs (US Department of the Interior, Bureau of Reclamation, Technical Services Center, 2013).

  43. 43.

    Fry, J. et al. Completion of the 2006 National Land Cover Database for the Conterminous United States. Programm. Eng. Remote Sens. 77, 858–864 (2011).

    Google Scholar 

  44. 44.

    Tirpak, J. M., Jones-Farrand, D. T., Thompson, F. R. III, Twedt, D. J. & Uihlein, W. B. III Multiscale Habitat Suitability Index Models for Priority Landbirds in the Central Hardwoods and West Gulf Coastal Plain/Ouachitas Bird Conservation Regions Report No. WO-NRS-49 (USDA Forest Service, 2009).

  45. 45.

    Dijak, W. D. & Rittenhouse, C. D. in Models for Planning Wildlife Conservation in Large Landscapes (eds Millspaugh, J. J. & Thompson, F. R. III) 367–390 (Elsevier/Academic, Amsterdam, 2009).

  46. 46.

    Tirpak, J. M. et al. Assessing ecoregional-scale habitat suitability index models for priority landbirds. J. Wildlife Manag. 73, 1307–1315 (2009).

    Google Scholar 

  47. 47.

    Wilson, B. T., Lister, A. J. & Riemann, R. I. A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data. For. Ecol. Manag. 271, 182–198 (2012).

    Google Scholar 

  48. 48.

    Jenness, J. DEM Surface Tools for ArcGIS (surface_area.exe)

  49. 49.

    The National Hydrography Dataset: NHDPlus Version 1 (United States Geological Survey, 2010).

  50. 50.

    Johnston, D. W. & Odum, E. P. Breeding bird populations in relation to plant succession on the Piedmont of Georgia. Ecology 37, 50–62 (1956).

    Google Scholar 

  51. 51.

    Howell, C. A., Porneluzi, P. A., Clawson, R. L. & Faaborg, J. Breeding density affects point-count accuracy in Missouri forest birds. J. Field Ornithol. 75, 123–133 (2004).

    Google Scholar 

  52. 52.

    Reidy, J. L., Thompson, F. R. & Bailey, J. W. Comparison of methods for estimating density of forest songbirds from point counts. J. Wildlife Manag. 75, 558–568 (2011).

    Google Scholar 

  53. 53.

    Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation 2nd edn (Sinauer Associates, Sunderland, MA, 2001).

    Google Scholar 

  54. 54.

    Ausprey, I. J. & Rodewald, A. D. Postfledging survivorship and habitat selection across a rural-to-urban landscape gradient. Auk 128, 293–302 (2011).

    Google Scholar 

  55. 55.

    Jenkins, J. M. A., Thompson, F. R. & Faaborg, J. Contrasting patterns of nest survival and postfledging survival in ovenbirds and Acadian flycatchers in Missouri forest fragments. Condor 118, 583–596 (2016).

    Google Scholar 

  56. 56.

    Rodewald, A. D. & Shustack, D. P. Urban flight: understanding individual and population-level responses of Nearctic–Neotropical migratory birds to urbanization. J. Anim. Ecol. 77, 83–91 (2008).

    Google Scholar 

  57. 57.

    Tittler, R., Fahrig, L. & Villard, M.-A. Evidence of large-scale source-sink dynamics and long-distance dispersal among wood thrush populations. Ecology 87, 3029–3036 (2006).

    Google Scholar 

  58. 58.

    Akçakaya, H. R. RAMAS GIS: Linking Spatial Data with Population Viability Analysis v.5.0 (Applied Biomathematics, 2005).

  59. 59.

    Bayne, E. M. & Hobson, K. A. Annual survival of adult American redstarts and ovenbirds in the southern boreal forest. Wilson Bull. 114, 358–367 (2002).

    Google Scholar 

  60. 60.

    Smith, S. M. The ‘underworld’ in a territorial sparrow: adaptive strategy for floaters. Am. Nat. 112, 571–582 (1978).

    Google Scholar 

  61. 61.

    McGowan, C. P., Runge, M. C. & Larson, M. A. Incorporating parametric uncertainty into population viability analysis models. Biol. Conserv. 144, 1400–1408 (2011).

    Google Scholar 

Download references


The authors thank C. Rota, J. S. Fraser and W. D. Dijak for data and input on the study. Funding was provided by the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative, the Department of the Interior USGS Northeast Climate Adaptation Science Center graduate and post-doctoral fellowships, and the USDA Forest Service Northern Research Station. The contents of this Letter are solely the responsibility of the authors and do not necessarily represent the views of the United States Government.

Author information




All authors contributed to the design of the analysis. T.W.B. and W.A.C. developed the individual-based model. T.W.B. developed the metapopulation model and performed the analysis. All authors contributed to drafting of the manuscript.

Corresponding author

Correspondence to Thomas W. Bonnot.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary R Code

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonnot, T.W., Cox, W.A., Thompson, F.R. et al. Threat of climate change on a songbird population through its impacts on breeding. Nature Clim Change 8, 718–722 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing