Extinction risk from climate change is reduced by microclimatic buffering

Abstract

Protecting biodiversity against the impacts of climate change requires effective conservation strategies that safeguard species at risk of extinction1. Microrefugia allowed populations to survive adverse climatic conditions in the past2,3, but their potential to reduce extinction risk from anthropogenic warming is poorly understood3,4,5, hindering our capacity to develop robust in situ measures to adapt conservation to climate change6. Here, we show that microclimatic heterogeneity has strongly buffered species against regional extirpations linked to recent climate change. Using more than five million distribution records for 430 climate-threatened and range-declining species, population losses across England are found to be reduced in areas where topography generated greater variation in the microclimate. The buffering effect of topographic microclimates was strongest for those species adversely affected by warming and in areas that experienced the highest levels of warming: in such conditions, extirpation risk was reduced by 22% for plants and by 9% for insects. Our results indicate the critical role of topographic variation in creating microrefugia, and provide empirical evidence that microclimatic heterogeneity can substantially reduce extinction risk from climate change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Classification of plants and insects by responses to warming and microclimatic heterogeneity.
Fig. 2: Modelled change in extirpation risk for each species as a function of warming and microclimatic heterogeneity.

References

  1. 1.

    Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58 (2011).

  2. 2.

    Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: individualistic responses of species in space and time. Proc. R. Soc. B 277, 661–671 (2010).

  3. 3.

    Moritz, C. & Agudo, R. The future of species under climate change: resilience or decline? Science 341, 504–508 (2013).

  4. 4.

    Morelli, T. L. et al. Managing climate change refugia for climate adaptation. PLoS ONE 11, e0159909 (2017).

  5. 5.

    Settele, J., Bishop, J. & Potts, S. G. Climate change impacts on pollination. Nat. Plants 2, 16092 (2016).

  6. 6.

    Greenwood, O., Mossman, H. L., Suggitt, A. J., Curtis, R. J. & Maclean, I. M. D. Using in situ management to conserve biodiversity under climate change. J. Appl. Ecol. 53, 885–894 (2016).

  7. 7.

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

  8. 8.

    Potter, K. A., Woods, A. H. & Pincebourde, S. Microclimatic challenges in global change biology. Glob. Change Biol. 19, 2932–2939 (2013).

  9. 9.

    Araújo, M. B., Alagador, D., Cabeza, M., Nogués‐Bravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett. 14, 484–492 (2011).

  10. 10.

    Hylander, K., Ehrlén, J., Luoto, M. & Meineri, E. Microrefugia: not for everyone. Ambio 44, 60–68 (2015).

  11. 11.

    Pearce-Higgins, J. W. et al. A national-scale assessment of climate change impacts on species: assessing the balance of risks and opportunities for multiple taxa. Biol. Conserv. 213, 124–134 (2017).

  12. 12.

    Maclean, I. M. D., Suggitt, A. J., Wilson, R. J., Duffy, J. P. & Bennie, J. J. Fine-scale climate change: modelling fine-scale spatial variation in biologically meaningful rates of warming. Glob. Change Biol. 23, 256–268 (2017).

  13. 13.

    Keating, K. A., Gogan, P. J., Vore, J. M. & Irby, L. R. A simple solar radiation index for wildlife habitat studies. J. Wildl. Manag. 71, 1344–1348 (2007).

  14. 14.

    Bennie, J., Huntley, B., Wiltshire, A., Hill, M. O. & Baxter, R. Slope, aspect and climate: spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecol. Model. 216, 47–59 (2008).

  15. 15.

    Oliver, T. H. et al. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Change 5, 941–945 (2015).

  16. 16.

    Robinson, R. A. & Sutherland, W. J. Post‐war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 39, 157–176 (2002).

  17. 17.

    Lenoir, J., Hattab, T. & Guillaume, P. J. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography 40, 253–266 (2017).

  18. 18.

    Frey, S. J. K. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392 (2016).

  19. 19.

    Wallis De Vries, M. & Van Swaay, C. Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling. Glob. Change Biol. 12, 1620–1626 (2006).

  20. 20.

    Oliver, T., Roy, D. B., Hill, J. K., Brereton, T. & Thomas, C. D. Heterogeneous landscapes promote population stability. Ecol. Lett. 16, 473–484 (2010).

  21. 21.

    Somero, G. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).

  22. 22.

    Lenoir, J. et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob. Change Biol. 19, 1470–1481 (2013).

  23. 23.

    Ashcroft, M. B., Gollan, J. R., Warton, D. W. & Ramp, D. A novel approach to quantify and locate potential microrefugia using topoclimate, climate stability, and isolation from the matrix. Glob. Change Biol. 18, 1866–1879 (2012).

  24. 24.

    Bennie, J. J., Hill, M. O., Baxter, R. & Huntley, B. Influence of slope and aspect on long-term vegetation change in British chalk grasslands. J. Ecol. 94, 355–368 (2006).

  25. 25.

    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).

  26. 26.

    Butt, N. et al. Challenges in assessing the vulnerability of species to climate change to inform conservation actions. Biol. Conserv. 199, 10–15 (2016).

  27. 27.

    Thomas, C. D. et al. A framework for assessing threats and benefits to species responding to climate change. Methods Ecol. Evol. 2, 125–142 (2011).

  28. 28.

    Thomas, C. D. Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends Ecol. Evol. 26, 216–221 (2011).

  29. 29.

    Maclean, I. M. D. & Wilson, R. J. Recent ecological responses to climate change support predictions of high extinction risk. Proc. Natl Acad. Sci. USA 108, 12337–12342 (2011).

  30. 30.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  31. 31.

    Pocock, M. J., Roy, H. E., Preston, C. D. & Roy, D. B. The Biological Records Centre: a pioneer of citizen science. Biol. J. Linn. Soc. 115, 475–493 (2015).

  32. 32.

    Heath, J., Pollard, E. & Thomas, J. A. Atlas of Butterflies in Britain and Ireland (Viking, New York, 1984).

  33. 33.

    Asher, J. et al. The Millennium Atlas of Butterflies in Britain and Ireland (Oxford Univ. Press, Oxford, 2001).

  34. 34.

    Perring, F. H. & Walters, S. M. Atlas of the British Flora (Nelson, London, 1962).

  35. 35.

    Preston, C. D., Pearman, D. A. & Dines, T. D. New Atlas of the British and Irish Flora. An Atlas of the Vascular Plants of Britain, Ireland, the Isle of Man and the Channel Islands (Oxford Univ. Press, Oxford, 2002).

  36. 36.

    Jenkins, G. J., Perry, M. C. & Prior, M. J. The Climate of the United Kingdom and Recent Trends (Met Office Hadley Centre, 2008).

  37. 37.

    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).

  38. 38.

    De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).

  39. 39.

    Claverie, M. & Vermote, E. NOAA Climate Data Record (CDR) of Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) Version 4 (NOAA National Centers for Environmental Information, 2014); https://doi.org/10.7289/V5M043BX

  40. 40.

    Morton, D. et al. Final Report for LCM2007—The New UK Land Cover Map CS Technical Report No. 11/07 (Centre for Ecology and Hydrology, 2011).

  41. 41.

    Mair, L. et al. Abundance changes and habitat availability drive species’ responses to climate change. Nat. Clim. Change 4, 127–131 (2014).

  42. 42.

    McClean, C. J., van den Berg, L. J. L., Ashmore, M. R. & Preston, C. D. Atmospheric nitrogen deposition explains patterns of plant species loss. Glob. Change Biol. 17, 2882–2892 (2011).

  43. 43.

    Stamp, L. D. The Land of Britain: Its Use and Misuse (Longmans, Green, London, 1948.

  44. 44.

    Fuller, R. M., Groom, G. B. & Jones, A. R. Land cover map of Great Britain. An automated classification of Landsat Thematic Mapper data. Photogramm. Eng. Remote Sens. 60, 553–562 (1994).

  45. 45.

    Baude, M. et al. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530, 85–88 (2016).

  46. 46.

    Dore, A. J. et al. Modelling the atmospheric transport and deposition of sulphur and nitrogen over the United Kingdom and assessment of the influence of SO2 emissions from international shipping. Atmos. Environ. 41, 2355–2367 (2007).

  47. 47.

    Liang, K.-Y. & Zeger, S. L. Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22 (1986).

  48. 48.

    Dormann, C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).

  49. 49.

    Carl, G. & Kühn, I. Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecol. Model. 207, 159–170 (2007).

  50. 50.

    Pan, W. Akaike’s information criterion in generalized estimating equations. Biometrics 57, 120–125 (2001).

  51. 51.

    Halekoh, U., Højsgaard, S. & Yan, J. The R package geepack for generalized estimating equations. J. Stat. Softw. 15, 1–11 (2006).

  52. 52.

    Ekstrom, C. MESS: Miscellaneous Esoteric Statistical Scripts v.0.4-3 (R Foundation for Statistical Computing, 2012); http://CRAN.R-project.org/package=MESS

  53. 53.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); http://www.r-project.org

  54. 54.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn (Springer, New York, 2002).

Download references

Acknowledgements

We thank the many people, predominantly volunteers, who submitted data to the Botanical Society of Britain and Ireland, British Bryological Society, Butterfly Conservation, Ground Beetle Recording Scheme, Soldier Beetle Recording Scheme, Longhorn Beetle Recording Scheme and UK Ladybird Survey, as well as the coordinators of those schemes. Thanks also to the UK Met Office, Natural England, Environment Agency, Centre for Ecology and Hydrology, Defra and NASA for data access. I. Stott, R. Inger, A. P. Durán and K. Gaston provided comments on drafts of the manuscript. The work was funded by Natural England and by NERC grant NE/L00268X/1 to R.J.W. and I.M.D.M.

Author information

A.J.S. conducted the analyses. I.M.D.M., N.J.B.I., N.A.M., M.D.M., S.D., H.Q.P.C. and R.J.W. conceived the work and supervised analyses. A.J.S., I.M.D.M. and R.J.W. wrote the manuscript with contributions from the whole team. C.M.B., A.G.A., T.A., J.J.B., J.J.H., R.F. and K.J.W. provided data and expert guidance.

Correspondence to Andrew J. Suggitt or Robert J. Wilson or Ilya M. D. Maclean.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Table 2

Supplementary Table 1

Model outputs and performance measures by species

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suggitt, A.J., Wilson, R.J., Isaac, N.J.B. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nature Clim Change 8, 713–717 (2018) doi:10.1038/s41558-018-0231-9

Download citation

Further reading