Abstract
Linkages between climate and mental health are often theorized but remain poorly quantified. In particular, it is unknown whether the rate of suicide, a leading cause of death globally, is systematically affected by climatic conditions. Using comprehensive data from multiple decades for both the United States and Mexico, we find that suicide rates rise 0.7% in US counties and 2.1% in Mexican municipalities for a 1 °C increase in monthly average temperature. This effect is similar in hotter versus cooler regions and has not diminished over time, indicating limited historical adaptation. Analysis of depressive language in >600 million social media updates further suggests that mental well-being deteriorates during warmer periods. We project that unmitigated climate change (RCP8.5) could result in a combined 9–40 thousand additional suicides (95% confidence interval) across the United States and Mexico by 2050, representing a change in suicide rates comparable to the estimated impact of economic recessions, suicide prevention programmes or gun restriction laws.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Young people’s mental and social distress in times of international crisis: evidence from helpline calls, 2019–2022
Scientific Reports Open Access 22 July 2023
-
Healthy Cities, A comprehensive dataset for environmental determinants of health in England cities
Scientific Data Open Access 25 March 2023
-
Intraday adaptation to extreme temperatures in outdoor activity
Scientific Reports Open Access 10 January 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Patz, J. A., Frumkin, H., Holloway, T., Vimont, D. J. & Haines, A. Climate change: challenges and opportunities for global health. J. Am. Med. Assoc. 312, 1565–1580 (2014).
McMichael, A. J. Globalization, climate change, and human health. New Engl. J. Med. 368, 1335–1343 (2013).
Watts, N. et al. Health and climate change: policy responses to protect public health. Lancet 386, 1861–1914 (2015).
Hsiang, S. M., Burke, M. & Miguel, E. Quantifying the influence of climate on human conflict. Science 341, 1235367 (2013).
Berry, H. L., Bowen, K. & Kjellstrom, T. Climate change and mental health: a causal pathways framework. Int. J. Public. Health 55, 123–132 (2010).
Smith, K. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 11 (IPCC, Cambridge Univ. Press, 2014).
Ding, N., Berry, H. L. & Bennett, C. M. The importance of humidity in the relationship between heat and population mental health: Evidence from Australia. PLoS One 11, e0164190 (2016).
Carleton, T. A. Crop-damaging temperatures increase suicide rates in India. Proc. Natl Acad. Sci. USA 114, 8746–8751 (2017).
Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380, 2224–2260 (2013).
Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2013).
Leading Causes of Death by Age Group, United States (Center for Disease Control, 2013); http://www.cdc.gov/injury/wisqars/leadingcauses.html
Swanson, J. W., Bonnie, R. J. & Appelbaum, P. S. Getting serious about reducing suicide: more how and less why. J. Am. Med. Assoc. 314, 2229–2230 (2015).
Kevan, S. M. Perspectives on season of suicide: a review. Soc. Sci. Med. D 14, 369–378 (1980).
Dixon, P. G. et al. Effects of temperature variation on suicide in five US counties, 1991–2001. Int. J. Biometeorol. 51, 395–403 (2007).
Tietjen, G. H.., & Kripke, D. F.. Suicides in California 1968–1977: absence of seasonality in Los Angeles and Sacramento counties. Psychiat. Res. 53, 161–172 (1994).
Ajdacic-Gross, V. et al. Seasonal associations between weather conditions and suicide—evidence against a classic hypothesis. Am. J. Epidemiol. 165, 561–569 (2007).
Kim, Y. et al. Suicide and ambient temperature in East Asian countries: a time-stratified case-crossover analysis. Environ. Health Perspect. 124, 75 (2016).
Dixon, P. G. & Kalkstein, A. J. Where are weather-suicide associations valid? An examination of nine US counties with varying seasonality. Int. J. Biometeorol. 62, 685–697 (2016).
Tsai, J.-F. Socioeconomic factors outweigh climate in the regional difference of suicide death rate in Taiwan. Psychiat. Res. 179, 212–216 (2010).
Stuckler, D., Basu, S., Suhrcke, M., Coutts, A. & McKee, M. The public health effect of economic crises and alternative policy responses in Europe: an empirical analysis. Lancet 374, 315–323 (2009).
Burke, M., Hsiang, S. M. & Miguel, E. Climate and conflict. Annu. Rev. Econ. 7, 577–617 (2015).
Global Health Observatory Data (World Health Organization, 2015); http://www.who.int/gho/mental_health/suicide_rates/en
National Vital Statistics System, Multiple Cause of Death Data (Center for Disease Control, accessed 14 July 2014); http://www.nber.org/data/vital-statistics-mortality-data-multiple-cause-of-death.html
Estadísticas de Mortalidad (1990–2010) (Instituto Nacional de Estadistica y Geografia, accessed 23 April 2015); http://en.www.inegi.org.mx/proyectos/registros/vitales/mortalidad
Baylis, P. Temperature and Temperament: Evidence from a Billion Tweets (Energy Institute, 2015).
Deschenes, O. & Moretti, E. Extreme weather events, mortality, and migration. Rev. Econ. Stat. 91, 659–681 (2009).
Barreca, A., Clay, K., Deschenes, O., Greenstone, M. & Shapiro, J. Adapting to climate change: The remarkable decline in the US temperature–mortality relationship over the twentieth century. J. Polit. Econ. 124, 105–159 (2016).
Dell, M., Jones, B. F. & Olken, B. A. What do we learn from the weather? The new climate–economy literature. J. Econ. Lit. 52, 740–798 (2014).
Chew, K. S. & McCleary, R. The spring peak in suicides: a cross-national analysis. Soc. Sci. Med. 40, 223–230 (1995).
Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386, 369–375 (2015).
Underlying Cause of Death Dataset (1999–2013) (Centers for Disease Control and Prevention, accessed 27 April 2015); https://wonder.cdc.gov/ucd-icd10.html
Zung, W. W. & Green, R. L. Seasonal variation of suicide and depression. Arch. Gen. Psychiat. 30, 89–91 (1974).
Dixon, K. W. & Shulman, M. D. A statistical investigation into the relationship between meteorological parameters and suicide. Int. J. Biometeorol. 27, 93–105 (1983).
Okoro, C. A. et al. Prevalence of household firearms and firearm-storage practices in the 50 states and the District of Columbia: findings from the Behavioral Risk Factor Surveillance System, 2002. Pediatrics 116, e370–e376 (2005).
Dixon, P. G. et al. Association of weekly suicide rates with temperature anomalies in two different climate types. Int. J. Environ. Res. Public Health 11, 11627–11644 (2014).
Kiyatkin, E. A. Brain temperature fluctuations during physiological and pathological conditions. Eur. J. Appl. Physiol. 101, 3–17 (2007).
Chehil, S. & Kutcher, S. P. Suicide Risk Management: A Manual for Health Professionals (John Wiley & Sons, Chichester, 2012).
Jashinsky, J. et al. Tracking suicide risk factors through Twitter in the US. Crisis 35, 51–59 (2015).
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485 (2012).
Burke, M., Dykema, J., Lobell, D. B., Miguel, E. & Satyanath, S. Incorporating climate uncertainty into estimates of climate change impacts. Rev. Econ. Stat. 97, 461–471 (2015).
Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).
Deschênes, O. & Greenstone, M. Climate change, mortality, and adaptation: Evidence from annual fluctuations in weather in the US. Am. Econ. J. Appl. Econ. 3, 152–185 (2011).
Huang, C., Barnett, A. G., Wang, X. & Tong, S. The impact of temperature on years of life lost in Brisbane, Australia. Nat. Clim. Change 2, 265–270 (2012).
Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).
Ueda, M., Mori, K. & Matsubayashi, T. The effects of media reports of suicides by well-known figures between 1989 and 2010 in Japan. Int. J. Epidemio 43, 623–629 (2014).
Andrés, A. R. & Hempstead, K. Gun control and suicide: The impact of state firearm regulations in the United States, 1995–2004. Health Policy 101, 95–103 (2011).
Matsubayashi, T. & Ueda, M. The effect of national suicide prevention programs on suicide rates in 21 OECD nations. Soc. Sci. Med. 73, 1395–1400 (2011).
O. S. U. PRISM Gridded Climate Data (PRISM Climate Group, accessed 14 July 2014); http://prism.oregonstate.edu/
LandScan 2000 High Resolution Global Population Dataset (Oak Ridge National Laboratory, 2000); http://web.ornl.gov/sci/landscan/
Hsiang, S. M. Climate econometrics. Annu. Rev. Resour. Economics 8, 43–75 (2016).
Berkeley Earth Surface Temperature Dataset (Berkeley Earth, 2016); http://www.berkeleyearth.org
Matsuura, K. & Willmott, C. Terrestrial Air Temperature and Precipitation: 1900–2010 Gridded Monthly Time Series Version 3.02 (Univ. Delaware, 2012); http://climate.geog.udel.edu/~climate/html_pages/download.html
Bertrand, M., Duflo, E. & Mullainathan, S. How much should we trust differences-in-differences estimates? Q. J. Econ. 119, 249–275 (2004).
Jacob, B., Lefgren, L. & Moretti, E. The dynamics of criminal behavior evidence from weather shocks. J. Human Resour. 42, 489–527 (2007).
World Climate Research Programme, CMIP5 Coupled Model Intercomparison Project (WCRP, accessed 1 January 2016); http://cmip-pcmdi.llnl.gov/cmip5/
United Nations World Population Prospects 2015 Revision (United Nations, 2015); https://esa.un.org/unpd/wpp/
Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 12 (IPCC, Cambridge Univ. Press, 2013).
Lynch, C., Seth, A. & Thibeault, J. Recent and projected annual cycles of temperature and precipitation in the northeast united states from CMIP5. J. Clim. 29, 347–365 (2016).
Auffhammer, M. & Aroonruengsawat, A. et al. Simulating the impacts of climate change, prices and population on California's residential electricity consumption. Climatic Change 109, 191–210 (2011).
Hsiang, S. M. & Narita, D. Adaptation to cyclone risk: Evidence from the global cross-section. Clim. Change Econ. 3, 1250011 (2012).
Acknowledgements
M.B., S.H.N. and S.B. thank the Stanford Woods Institute for the Environment for partial funding. We also thank T. Miguel and T. Carleton for helpful discussion and comments.
Author information
Authors and Affiliations
Contributions
M.B., P.B., S.B. and S.H. designed the study, M.B., C.B., F.G., S.H.N. and P.B. analysed data, and M.B., P.B., S.H.N., S.B. and S.H. wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary figures 1–4, Supplementary tables 1–4
Rights and permissions
About this article
Cite this article
Burke, M., González, F., Baylis, P. et al. Higher temperatures increase suicide rates in the United States and Mexico. Nature Clim Change 8, 723–729 (2018). https://doi.org/10.1038/s41558-018-0222-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41558-018-0222-x
This article is cited by
-
Intraday adaptation to extreme temperatures in outdoor activity
Scientific Reports (2023)
-
Young people’s mental and social distress in times of international crisis: evidence from helpline calls, 2019–2022
Scientific Reports (2023)
-
Healthy Cities, A comprehensive dataset for environmental determinants of health in England cities
Scientific Data (2023)
-
Global warming and urbanization
Journal of Population Economics (2023)
-
Association between short-term ambient temperature variability and depressive symptoms: using staggered adoption of low-carbon city program in China as a quasi-natural experiment
Air Quality, Atmosphere & Health (2023)