Partitioning global land evapotranspiration using CMIP5 models constrained by observations

Article metrics



The ratio of plant transpiration to total terrestrial evapotranspiration (T/ET) captures the role of vegetation in surface–atmosphere interactions. However, its magnitude remains highly uncertain at the global scale. Here we apply an emergent constraint approach that integrates CMIP5 Earth system models (ESMs) with 33 field T/ET measurements to re-estimate the global T/ET value. Our observational constraint strongly increases the original ESM estimates (0.41 ± 0.11) and greatly alleviates intermodel discrepancy, which leads to a new global T/ET estimate of 0.62 ± 0.06. For all the ESMs, the leaf area index is identified as the primary driver of spatial variations of T/ET, but to correct its bias generates a larger T/ET underestimation than the original ESM output. We present evidence that the ESM underestimation of T/ET is, instead, attributable to inaccurate representation of canopy light use, interception loss and root water uptake processes in the ESMs. These processes should be prioritized to reduce model uncertainties in the global hydrological cycle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Simulated and observation-based estimates of T/ET at the global and stand levels.
Fig. 2: Emergent constraint on the model-simulated global T/ET.
Fig. 3: Contribution of environmental drivers to spatial variations of T/ET in ESMs.
Fig. 4: Implications for the model-derived T/ET of replacing dominant drivers with observations.
Fig. 5: Impact of modelled T/ET on the runoff responses to rising atmospheric CO2.


  1. 1.

    Jasechko, S. et al. Terrestrial water fluxes dominated by transpiration. Nature 496, 347–350 (2013).

  2. 2.

    Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

  3. 3.

    Wang, K. & Dickinson, R. E. A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev. Geophys. 50, RG2005 (2012).

  4. 4.

    Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).

  5. 5.

    Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

  6. 6.

    Zeng, Z. et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Change 7, 432–436 (2017).

  7. 7.

    Schlesinger, W. H. & Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 189–190, 115–117 (2014).

  8. 8.

    Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).

  9. 9.

    Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. Discuss. 10, 1903–1925 (2017).

  10. 10.

    Wei, Z. et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44, 2792–2801 (2017).

  11. 11.

    Sutanto, S. et al. HESS opinions: a perspective on different approaches to determine the contribution of transpiration to the surface moisture fluxes. Hydrol. Earth Syst. Sci. 11, 2583–2612 (2014).

  12. 12.

    Kool, D. et al. A review of approaches for evapotranspiration partitioning. Agric. For. Meteorol. 184, 56–70 (2014).

  13. 13.

    Coenders-Gerrits, A. M. et al. Uncertainties in transpiration estimates. Nature 506, E1–2 (2014).

  14. 14.

    Schlaepfer, D. R. et al. Terrestrial water fluxes dominated by transpiration: comment. Ecosphere 5, 1–9 (2014).

  15. 15.

    Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).

  16. 16.

    Evaristo, J., Jasechko, S. & McDonnell, J. J. Global separation of plant transpiration from groundwater and streamflow. Nature 525, 91–94 (2015).

  17. 17.

    Milly, P. C., Dunne, K. A. & Vecchia, A. V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438, 347–350 (2005).

  18. 18.

    Seager, R. et al. Projections of declining surface-water availability for the southwestern United States. Nat. Clim. Change 3, 482–486 (2012).

  19. 19.

    Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2012).

  20. 20.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

  21. 21.

    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).

  22. 22.

    Mystakidis, S., Davin, E. L., Gruber, N. & Seneviratne, S. I. Constraining future terrestrial carbon cycle projections using observation-based water and carbon flux estimates. Glob. Change Biol. 22, 2198–2215 (2016).

  23. 23.

    Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).

  24. 24.

    Villegas, J. C. et al. Sensitivity of regional evapotranspiration partitioning to variation in woody plant cover: insights from experimental dryland tree mosaics. Glob. Ecol. Biogeogr. 24, 1040–1048 (2015).

  25. 25.

    Lloyd, J. et al. Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. Biogeosciences 7, 1833–1859 (2010).

  26. 26.

    Clark, D. et al. The Joint UK Land Environment Simulator (JULES), model description—Part 2: carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4, 701–722 (2011).

  27. 27.

    Gu, L. et al. Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299, 2035–2038 (2003).

  28. 28.

    Mercado, L. M. et al. Impacts of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).

  29. 29.

    Knohl, A. & Baldocchi, D. D. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. J. Geophys. Res. Biogeosci. 113, G02023 (2008).

  30. 30.

    Oliveira, P. J. C., Davin, E. L., Levis, S. & Seneviratne, S. I. Vegetation-mediated impacts of trends in global radiation on land hydrology: a global sensitivity study. Glob. Change Biol. 17, 3453–3467 (2011).

  31. 31.

    Berry, J. A., Beerling, D. J. & Franks, P. J. Stomata: key players in the earth system, past and present. Curr. Opin. Plant Boil. 13, 232–239 (2010).

  32. 32.

    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

  33. 33.

    Wei, S., Yi, C., Fang, W. & Hendrey, G. A global study of GPP focusing on light-use efficiency in a random forest regression model.Ecosphere 8, e01724. (2017).

  34. 34.

    Lawrence, D. M., Thornton, P. E., Oleson, K. W. & Bonan, G. B. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on land–atmosphere interaction. J. Hydrometeorol. 8, 862–880 (2007).

  35. 35.

    Llorens, P. & Domingo, F. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J. Hydrol. 335, 37–54 (2007).

  36. 36.

    Heitman, J., Horton, R., Sauer, T. & DeSutter, T. Sensible heat observations reveal soil-water evaporation dynamics. J. Hydrometeorol. 9, 165–171 (2008).

  37. 37.

    Yang, Y., Donohue, R. J. & McVicar, T. R. Global estimation of effective plant rooting depth: implications for hydrological modeling. Wat. Resour. Res. 52, 8260–8276 (2016).

  38. 38.

    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

  39. 39.

    Parolari, A. J., Goulden, M. L. & Bras, R. L. Ecohydrological controls on grass and shrub above-ground net primary productivity in a seasonally dry climate. Ecohydrology 8, 1572–1583 (2015).

  40. 40.

    Oleson, K. W. et al. Technical description of version 4.0 of the Community Land Model (CLM). Geophys. Res. Lett. 37, 256–265 (2010).

  41. 41.

    Miralles, D. G., Gash, J. H., Holmes, T. R. H., de Jeu, R. A. M. & Dolman, A. J. Global canopy interception from satellite observations. J. Geophys. Res. 115, D16122 (2010).

  42. 42.

    Wang, D., Wang, G. & Anagnostou, E. N. Impact of sub-grid variability of precipitation and canopy water storage on hydrological processes in a coupled land–atmosphere model. Clim. Dynam. 32, 649–662 (2009).

  43. 43.

    Field, C., Jackson, R. & Mooney, H. Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ. 18, 1214–1255 (1995).

  44. 44.

    Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).

  45. 45.

    Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

  46. 46.

    Solomon, S. et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219–1223 (2010).

  47. 47.

    Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

  48. 48.

    Archer, C. L. & Jacobson, M. Z. Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements. J. Geophys. Res. Atmos. 108, 469–474 (2003).

  49. 49.

    Devis, A., Demuzere, M. & van Lipzig, N. P. M. A height dependent evaluation of wind and temperature over Europe in the CMIP5 Earth System Models. Clim. Res. 61, 41–56 (2014).

  50. 50.

    Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).

  51. 51.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

  52. 52.

    De’ath, G. Boosted trees for ecological modeling and prediction. Ecology 88, 243–251 (2007).

  53. 53.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

Download references


This study was supported by the National Natural Science Foundation of China (41561134016 and 41530528), the 111 Project (B14001) and the National Youth Top-notch Talent Support Program in China. C.H. is grateful for funding from the Centre for Ecology and Hydrology National Capability fund in the UK.

Author information

S.P. designed the research; X.L. performed the analysis; X.L., S.P. and C.H. drafted the paper and all the authors contributed to the interpretation of the results and to the text.

Correspondence to Shilong Piao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–4, Supplementary Tables 1–4, Supplementary Figures 1–7

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lian, X., Piao, S., Huntingford, C. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nature Clim Change 8, 640–646 (2018) doi:10.1038/s41558-018-0207-9

Download citation

Further reading