Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The global potential for converting renewable electricity to negative-CO2-emissions hydrogen

Abstract

The IPCC has assigned a critical role to negative-CO2-emissions energy in meeting energy and climate goals by the end of the century, with biomass energy plus carbon capture and storage (BECCS) prominently featured. We estimate that methods of combining saline water electrolysis with mineral weathering powered by any source of non-fossil fuel-derived electricity could, on average, increase energy generation and CO2 removal by >50 times relative to BECCS, at equivalent or lower cost. This electrogeochemistry avoids the need to produce and store concentrated CO2, instead converting and sequestering CO2 as already abundant, long-lived forms of ocean alkalinity. Such energy systems could also greatly reduce land and freshwater impacts relative to BECCS, and could also be integrated into conventional energy production to reduce its carbon footprint. Further research is needed to better understand the full range and capacity of the world’s negative-emissions options.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Various schemes for electrolytically generating H2 while consuming CO2 and transforming it to dissolved mineral bicarbonate.
Fig. 2: Global energy (H2) generation potential versus global CO2 removal potential for the NE H2 process when powered by each of the electricity sources noted.
Fig. 3: Supply–cost curves of cumulative potential global energy production versus cost of production (in ascending order of cost) for NE H2 and for renewable electricity from the six renewable energy sources listed (Table 1).
Fig. 4: Supply–cost curve of cumulative CO2 removal potential versus cost (in ascending order of cost) for NE H2 employing the six electricity sources listed in Table 1.

References

  1. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  2. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  3. Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

    Article  CAS  Google Scholar 

  4. Fuss, S. et al. Research priorities for negative emissions. Environ. Res. Lett. 11, 115007 (2016).

    Article  Google Scholar 

  5. Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).

    Article  CAS  Google Scholar 

  6. Möllersten, K., Yan, J. & Moreira, J. R. Potential market niches for biomass energy with CO2 capture and storage—opportunities for energy supply with negative CO2 emissions. Biomass Bioenergy 25, 273–285 (2003).

    Article  Google Scholar 

  7. Boysen, L. R. et al. The limits to global-warming mitigation by terrestrial carbon removal. Earth’s Future 5, 463–474 (2017).

    CAS  Google Scholar 

  8. Fajardy, M. & Mac Dowell, N. Can BECCS deliver sustainable and resource efficient negative emissions? Energy Environ. Sci. 10, 1389–1426 (2017).

    Article  CAS  Google Scholar 

  9. Lenton, T. M. The global potential for carbon dioxide removal. Issues Environ. Sci. Technol. 38, 52–79 (2014).

    Article  CAS  Google Scholar 

  10. Hughes, A. D. et al. Does seaweed offer a solution for bioenergy with biological carbon capture and storage? Greenh. Gas. Sci. Technol. 2, 402–407 (2007).

    Article  CAS  Google Scholar 

  11. Little, M. G. & Jackson, R. B. Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers. Environ. Sci. Technol. 44, 9225–9232 (2010).

    Article  CAS  Google Scholar 

  12. Zoback, M. D. & Gorelick, S. M. Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc. Natl Acad. Sci. USA 109, 10164–10168 (2012).

    Article  Google Scholar 

  13. Maddali, V., Tularam, G. A. & Glynn, P. Economic and time-sensitive issues surrounding CCS: a policy analysis. Environ. Sci. Technol. 49, 8959–8968 (2015).

    Article  CAS  Google Scholar 

  14. Gasser, T., Guivarch, G., Tachiiri, K., Jones, C. D. & Ciais, P. Negative emissions physically needed to keep global warming below 2 °C. Nat. Commun. 6, 8958 (2015).

    Article  CAS  Google Scholar 

  15. Hansen, J. et al. Young people’s burden: requirement of negative CO2 emissions. Earth Syst. Dynam. 8, 577–616 (2017).

    Article  Google Scholar 

  16. House, K. Z., House, C. H., Schrag, D. P. & Aziz, M. J. Electrochemical acceleration of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change. Environ. Sci. Technol. 41, 8464–8470 (2007).

    Article  CAS  Google Scholar 

  17. Rau, G. H. Electrochemical splitting of calcium carbonate to increase solution alkalinity: implications for mitigation of carbon dioxide and ocean acidity. Environ. Sci. Technol. 42, 8935–8940 (2008).

    Article  CAS  Google Scholar 

  18. Rau, G. H. et al. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production. Proc. Natl Acad. Sci. USA 110, 10095–10100 (2013).

    Article  Google Scholar 

  19. Lu, L., Huang, Z., Rau, G. H. & Ren, Z. J. Microbial electrolytic carbon capture for carbon negative and energy positive wastewater treatment. Environ. Sci. Technol. 49, 8193–8201 (2015).

    Article  CAS  Google Scholar 

  20. Willauer, H. D., DiMascio, F., Hardy, D. R. & Williams, F. W. Development of an electrolytic cation exchange module for the simultaneous extraction of carbon dioxide and hydrogen gas from natural seawater. Energy Fuels 31, 1723–1730 (2017).

    Article  CAS  Google Scholar 

  21. Rau, G. H. & Caldeira, K. Enhanced carbonate dissolution: a means of sequestering waste CO2 as ocean bicarbonate. Energy Convers. Manag. 40, 1803–1813 (1999).

    Article  CAS  Google Scholar 

  22. Rau, G. H. CO2 mitigation via capture and chemical conversion in seawater. Environ. Sci. Technol. 45, 1088–1092 (2011).

    Article  CAS  Google Scholar 

  23. de Lannoy, C.-F. et al. Indirect ocean capture of atmospheric CO2: Part I. Prototype of a negative emissions technology. Int. J. Greenh. Gas Control 70, 254–261 (2018).

    Article  CAS  Google Scholar 

  24. Licht, S. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach. Adv. Mater. 23, 5592–5612 (2011).

    Article  CAS  Google Scholar 

  25. Ren, J. W., Li, F. F., Lau, J., Gonzalez-Urbina, L. & Licht, S. One-pot synthesis of carbon nanofibers from CO2. Nano Lett. 15, 6142–6148 (2015).

    Article  CAS  Google Scholar 

  26. Li, F. F. et al. Solar fuels: a one-pot synthesis of hydrogen and carbon fuels from water and carbon dioxide. Adv. Energy Mater. 5, 1401791 (2015).

    Article  CAS  Google Scholar 

  27. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2012).

  28. Bruckner, T. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 7 (IPCC, Cambridge Univ. Press, 2014).

  29. Key World Energy Statistics (International Energy Agency, 2017).

  30. Study Task Force of the Hydrogen Council Hydrogen—Scaling up a Sustainable Pathway for the Global Energy Transition (The Hydrogen Council, 2017).

  31. Le Quéré, C. et al. Global Carbon Budget 2017. Earth Syst. Sci. Data Discuss. https://doi.org/10.5194/essd-2017-123 (2017).

  32. National Research CouncilThe Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs (National Academies, 2004).

    Google Scholar 

  33. McDowall, W. & Eames, M. Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: A review of the hydrogen futures literature. Energy Policy 34, 1236–1250 (2006).

    Article  Google Scholar 

  34. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Annex III (Cambridge Univ. Press, 2014).

  35. Renforth, P. & Henderson, G. Assessing ocean alkalinity for carbon sequestration. Rev. Geophys. 55, 636–674 (2017).

    Article  Google Scholar 

  36. Hanak, D. P., Jenkins, B. G., Kruger, T. & Manovic, V. High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner. Appl. Energy 205, 1189–1201 (2017).

    Article  CAS  Google Scholar 

  37. Nikulshina, V., Hirsch, D., Mazzotti, M. & Steinfeld, A. CO2 capture from air and co-production of H2 via the Ca(OH)2-CaCO3 cycle using concentrated solar power—thermodynamic analysis. Energy 31, 1715–1725 (2006).

    Article  CAS  Google Scholar 

  38. Licht, S. et al. Carbon nanotubes produced from ambient carbon dioxide for environmentally sustainable lithium-ion and sodium-ion battery anodes. ACS Cent. Sci. 2, 162–168 (2016).

    Article  CAS  Google Scholar 

  39. Rau, G. H. & Baird, J. R. Negative-CO2-emissions ocean thermal energy conversion. Renew. Sustain. Energy Rev. (in the press).

  40. Fu, R. et al. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017 Technical Report NREL/TP-6A20-68925 (US National Renewable Energy Laboratory, 2017).

  41. Mone, C. et al. 2015 Cost of Wind Energy Review Technical Report NREL/TP-6A20-66861 (US National Renewable Energy Laboratory, 2017).

  42. Hydrogen Production: Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan—Planned Program Activities for 2011–2020 (Energy Efficiency and Renewable Energy Program, US Department of Energy, 2015).

  43. Gahleitner, G. Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int. J. Hydrog. Energy 38, 2039–2061 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge (1) the support of Lawrence Livermore National Laboratory and input from R. Aines and S. Carroll (G.H.R.), (2) support by the Office of Naval Research both directly and through the US Naval Research Laboratory (H.D.W.) and (3) funding from the US National Science Foundation (grant no. CBET 1704921 to Z.J.R.). M. MacCracken provided valuable editorial input.

Author information

Authors and Affiliations

Authors

Contributions

G.H.R. conceived of and led the project, analysed data and wrote the paper. H.D.W and Z.J.R provided data and helped write the paper.

Corresponding author

Correspondence to Greg H. Rau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rau, G.H., Willauer, H.D. & Ren, Z.J. The global potential for converting renewable electricity to negative-CO2-emissions hydrogen. Nature Clim Change 8, 621–625 (2018). https://doi.org/10.1038/s41558-018-0203-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-018-0203-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing