Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Forest-rainfall cascades buffer against drought across the Amazon


Tree transpiration in the Amazon may enhance rainfall for downwind forests. Until now it has been unclear how this cascading effect plays out across the basin. Here, we calculate local forest transpiration and the subsequent trajectories of transpired water through the atmosphere in high spatial and temporal detail. We estimate that one-third of Amazon rainfall originates within its own basin, of which two-thirds has been transpired. Forests in the southern half of the basin contribute most to the stability of other forests in this way, whereas forests in the south-western Amazon are particularly dependent on transpired-water subsidies. These forest-rainfall cascades buffer the effects of drought and reveal a mechanism by which deforestation can compromise the resilience of the Amazon forest system in the face of future climatic extremes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Transpiration recycling in the Amazon basin.
Fig. 2: From transpiration to rainfall.
Fig. 3: Effect of Amazonian tree transpiration on rainfall in each of the subregions of the Amazon basin.
Fig. 4: Effect of Amazon tree transpiration on Amazon forest resilience.
Fig. 5: All 0.25° cells in the Amazon basin ranked by their contribution to Amazonian forest resilience through tree transpiration.


  1. 1.

    Aragão, L. E. O. C. The rainforest's water pump. Nature 489, 217–218 (2012).

    Google Scholar 

  2. 2.

    Spracklen, D. V., Arnold, S. R. & Taylor, C. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).

    CAS  Google Scholar 

  3. 3.

    Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation–atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).

    CAS  Google Scholar 

  4. 4.

    Costa, M. H. & Foley, J. A. Water balance of the Amazon basin: dependence on vegetation cover and canopy conductance. J. Geophys. Res. Atmos. 102, 23973–23989 (1997).

    CAS  Google Scholar 

  5. 5.

    Costa, M. H. & Pires, G. F. Effects of Amazon and central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol. 30, 1970–1979 (2010).

    Google Scholar 

  6. 6.

    Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).

    CAS  Google Scholar 

  7. 7.

    Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319, 169–172 (2008).

    CAS  Google Scholar 

  8. 8.

    Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).

    CAS  Google Scholar 

  9. 9.

    Nobre, C. A., Sellers, P. J. & Shukla, J. Amazonian deforestation and regional climate change. J. Clim. 4, 957–988 (1991).

    Google Scholar 

  10. 10.

    Oyama, M. D. & Nobre, C. A. A new climate–vegetation equilibrium state for tropical South America. Geophys. Res. Lett. 30, 2199 (2003).

    Google Scholar 

  11. 11.

    Sampaio, G. et al. Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys. Res. Lett. 34, L17709 (2007).

    Google Scholar 

  12. 12.

    Bagley, J. E., Desai, A. R., Harding, K. J., Snyder, P. K. & Foley, J. A. Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon? J. Clim. 27, 345–361 (2014).

    Google Scholar 

  13. 13.

    Nepstad, D. C. et al. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372, 666–669 (1994).

    CAS  Google Scholar 

  14. 14.

    Eltahir, E. A. B. & Bras, R. L. Precipitation recycling in the Amazon basin. Q. J. R. Meteorol. Soc. 120, 861–880 (1994).

    Google Scholar 

  15. 15.

    Zemp, D. C. et al. On the importance of cascading moisture recycling in South America. Atmos. Chem. Phys. 14, 13337–13359 (2014).

    CAS  Google Scholar 

  16. 16.

    Fisher, J. B. et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017).

    Google Scholar 

  17. 17.

    Holmgren, M., Hirota, M., van Nes, E. H. & Scheffer, M. Effects of interannual climate variability on tropical tree cover. Nat. Clim. Change 3, 755–758 (2013).

    Google Scholar 

  18. 18.

    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    CAS  Google Scholar 

  19. 19.

    Nepstad, D. C., Stickler, C. M., Soares-Filho, B. & Merry, F. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Phil. Trans. R. Soc. Lond. B Biol. Sci. 363, 1737–1746 (2008).

    Google Scholar 

  20. 20.

    Van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).

    Google Scholar 

  21. 21.

    Van Beek, L. P. H., Wada, Y. & Bierkens, M. F. P. Global monthly water stress: 1. Water balance and water availabilty. Water Resour. Res. 47, W07517 (2011).

    Google Scholar 

  22. 22.

    Hirota, M., Holmgren, M., van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    CAS  Google Scholar 

  23. 23.

    Staal, A., Dekker, S. C., Xu, C. & van Nes, E. H. Bistability, spatial interaction, and the distribution of tropical forests and savannas. Ecosystems 19, 1080–1091 (2016).

    Google Scholar 

  24. 24.

    Xu, C. et al. Remotely sensed canopy height reveals three pantropical ecosystem states. Ecology 97, 2518–2521 (2016).

    Google Scholar 

  25. 25.

    Verbesselt, J. et al. Remotely sensed resilience of tropical forests. Nat. Clim. Change 6, 1028–1031 (2016).

    Google Scholar 

  26. 26.

    Dirmeyer, P. A. & Brubaker, K. L. Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993. J. Geophys. Res. Atmos. 104, 19383–19397 (1999).

    Google Scholar 

  27. 27.

    Dirmeyer, P. A. & Brubaker, K. L. Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeorol. 8, 20–37 (2007).

    Google Scholar 

  28. 28.

    Tuinenburg, O. A., Hutjes, R. W. A. & Kabat, P. The fate of evaporated water from the Ganges basin. J. Geophys. Res. Atmos. 117, D01107 (2012).

    Google Scholar 

  29. 29.

    Bosmans, J. H. C., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Hydrological impacts of global land cover change and human water use. Hydrol. Earth Syst. Sci. 21, 5603–5626 (2017).

    Google Scholar 

  30. 30.

    Von Randow, C. et al. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor. Appl. Climatol. 78, 5–26 (2004).

    Google Scholar 

  31. 31.

    Wang-Erlandsson, L., van der Ent, R. J., Gordon, L. J. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the hydrological cycle—part 1: temporal characteristics over land. Earth Syst. Dynam. 5, 441–469 (2014).

    Google Scholar 

  32. 32.

    Miralles, D. G. et al. The WACMOS‒ET project—part 2: evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 20, 823–842 (2016).

    Google Scholar 

  33. 33.

    Miralles, D. G., Gash, J. H., Holmes, T. R. H., de Jeu, R. A. M. & Dolman, A. J. Global canopy interception from satellite observations. J. Geophys. Res. Atmos. 115, D16122 (2010).

    Google Scholar 

  34. 34.

    Van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the hydrological cycle—part 2: moisture recycling. Earth Syst. Dynam. 5, 471–489 (2014).

    Google Scholar 

  35. 35.

    Zeng, N. et al. Causes and impacts of the 2005 Amazon drought. Environ. Res. Lett. 3, 014002 (2008).

    Google Scholar 

  36. 36.

    Satyamurty, P., da Costa, C. P. W. & Manzi, A. O. Moisture source for the Amazon basin: a study of contrasting years. Theor. Appl. Climatol. 111, 195–209 (2013).

    Google Scholar 

  37. 37.

    Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011).

    CAS  Google Scholar 

  38. 38.

    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    CAS  Google Scholar 

  39. 39.

    Burde, G. I., Gandush, C. & Bayarjargal, Y. Bulk recycling models with incomplete vertical mixing. Part II: precipitation recycling in the Amazon basin. J. Clim. 19, 1473–1489 (2006).

    Google Scholar 

  40. 40.

    Wright, J. S. et al. Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl Acad. Sci. USA 114, 8481–8486 (2017).

    CAS  Google Scholar 

  41. 41.

    Maeda, E. E., Kim, H., Aragão, L. E., Famiglietti, J. S. & Oki, T. Disruption of hydroecological equilibrium in southwest Amazon mediated by drought. Geophys. Res. Lett. 42, 7546–7553 (2015).

    Google Scholar 

  42. 42.

    Flores, B. M. et al. Floodplains as an Achilles’ heel of Amazonian forest resilience. Proc. Natl Acad. Sci. USA 114, 4442–4446 (2017).

    CAS  Google Scholar 

  43. 43.

    Aragão, L. E. O. C. et al. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Phil. Trans. R. Soc. Lond. B 363, 1779–1785 (2008).

    Google Scholar 

  44. 44.

    Pires, G. F. & Costa, M. H. Deforestation causes different subregional effects on the Amazon bioclimatic equilibrium. Geophys. Res. Lett. 40, 3618–3623 (2013).

    Google Scholar 

  45. 45.

    Lenton, T. M. et al. Tipping elements in the Earth's climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    CAS  Google Scholar 

  46. 46.

    Nobre, C. A. & Borma, L. D. S. ‘Tipping points’ for the Amazon forest. Curr. Opin. Environ. Sustain. 1, 28–36 (2009).

    Google Scholar 

  47. 47.

    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).

    CAS  Google Scholar 

  48. 48.

    Poorter, L. et al. Biomass resilience of neotropical secondary forests. Nature 530, 211–214 (2016).

    CAS  Google Scholar 

  49. 49.

    Zemp, D. C., Schleussner, C. F., Barbosa, H. M. J. & Rammig, A. Deforestation effects on Amazon forest resilience. Geophys. Res. Lett. 44, 6182–6190 (2017).

    Google Scholar 

  50. 50.

    Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).

    Google Scholar 

  51. 51.

    Ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).

    Google Scholar 

  52. 52.

    Fittkau, E. J. Esboço de uma divisao ecolôgica da regiao amazônica. In Proc. Symp. Biol. Trop. Amaz., Florencia y Leticia, 1969 363–372 (1971).

  53. 53.

    Quesada, C. A. et al. Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8, 1415–1440 (2011).

    CAS  Google Scholar 

  54. 54.

    Markewitz, D., Devine, S., Davidson, E. A., Brando, P. & Nepstad, D. C. Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake. New Phytol. 187, 592–607 (2010).

    Google Scholar 

  55. 55.

    Hagemann, S. & Gates, L. D. Improving a subgrid runoff parameterization scheme for climate models by the use of high resolution data derived from satellite observations. Clim. Dyn. 21, 349–359 (2003).

    Google Scholar 

  56. 56.

    Wada, Y., Wisser, D. & Bierkens, M. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dynam. 5, 15–40 (2014).

    Google Scholar 

  57. 57.

    Hagemann S., Botzet M., Dümenil L., Machenhauer B. Derivation of Global GCM Boundary Conditions from 1km Land Use Satellite Data MPI Report No. 289 (Max Planck Institute for Meteorology, 1999).

  58. 58.

    Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA‐Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).

    Google Scholar 

  59. 59.

    Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—Irrigation and Drainage Paper 56 (FAO, 1998).

  60. 60.

    Araújo A. C., von Randow C. & Restrepo-Coupe N. in Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin (eds Nagy L., Forsberg B. R. & Artaxo P.) 149–169 (Springer, Berlin, 2016).

  61. 61.

    Dee, D. P. et al. The ERA‐Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Google Scholar 

  62. 62.

    Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

    Google Scholar 

  63. 63.

    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Google Scholar 

  64. 64.

    Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).

    CAS  Google Scholar 

  65. 65.

    Freitas, S. R. et al. A convective kinematic trajectory technique for low‐resolution atmospheric models. J. Geophys. Res. Atmos. 105, 24375–24386 (2000).

    CAS  Google Scholar 

  66. 66.

    Van der Ent, R. J., Tuinenburg, O. A., Knoche, H. R., Kunstmann, H. & Savenije, H. H. G. Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking? Hydrol. Earth Syst. Sci. 17, 4869–4884 (2013).

    Google Scholar 

  67. 67.

    Mueller, B. et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci. 17, 3707–3720 (2013).

    Google Scholar 

  68. 68.

    Brubaker, K. L., Entekhabi, D. & Eagleson, P. S. Estimation of continental precipitation recycling. J. Clim. 6, 1077–1089 (1993).

    Google Scholar 

  69. 69.

    Bosilovich, M. G. & Chern, J.-D. Simulation of water sources and precipitation recycling for the MacKenzie, Mississippi, and Amazon River basins. J. Hydrometeorol. 7, 312–329 (2006).

    Google Scholar 

  70. 70.

    Costa, M. H. & Foley, J. A. Trends in the hydrologic cycle of the Amazon basin. J. Geophys. Res. Atmos. 104, 14189–14198 (1999).

    Google Scholar 

  71. 71.

    Trenberth, K. E. Atmospheric moisture recycling: role of advection and local evaporation. J. Clim. 12, 1368–1381 (1999).

    Google Scholar 

  72. 72.

    Livina, V. N., Kwasniok, F. & Lenton, T. M. Potential analysis reveals changing number of climate states during the last 60 kyr. Clim. Past. 6, 77–82 (2010).

    Google Scholar 

  73. 73.

    DiMiceli, C. M. et al. Annual Global Automated MODIS Vegetation Continuous Fields (MOD44B) at 250m Spatial Resolution for Data Years Beginning Day 65, 2000–2010, Collection 5 Percent Tree Cover (University of Maryland, 2011).

  74. 74.

    Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high‐resolution grids. Int. J. Climatol. 25, 693–712 (2005).

    Google Scholar 

  75. 75.

    Markham, C. G. Seasonality of precipitation in the United States. Ann. Assoc. Am. Geogr. 60, 593–597 (1970).

    Google Scholar 

  76. 76.

    Aguiar, A. P. D. et al. Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Glob. Change Biol. 22, 1821–1840 (2016).

    Google Scholar 

  77. 77.

    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

    Google Scholar 

  78. 78.

    Olson J. S. Global Ecosystem Framework—Definitions (USGS EROS Data Center, 1994).

  79. 79.

    Olson J. S. Global Ecosystem Framework—Translation Strategy (USGS EROS Data Center, 1994).

  80. 80.

    Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: a new high‐resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, GB1011 (2010).

    Google Scholar 

Download references


We thank C. Xu and H. ter Steege for providing data files. A.S. thanks S. Bathiany and B. M. Flores for useful discussions. A.S. was supported by a PhD scholarship from SENSE Research School. O.A.T. was supported by the Netherlands Organization for Scientific Research under the Innovational Research Incentives Scheme Veni (grant agreement 016.171.019). E.H.v.N. and M.S. were supported by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement 643073 (ITN CRITICS). D.C.Z. was supported by IRTG 1740/TRP 2011/50151-0, funded by the DFG and FAPESP. This work was carried out under the programme of the Netherlands Earth System Science Centre.

Author information




A.S., O.A.T. and S.C.D. designed the research. A.S., O.A.T. and J.H.C.B. carried out the analyses. All authors interpreted the results. A.S. wrote the paper with contributions from all authors.

Corresponding author

Correspondence to Arie Staal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary table 1, Supplementary figures 1–12, Supplementary references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Staal, A., Tuinenburg, O.A., Bosmans, J.H.C. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nature Clim Change 8, 539–543 (2018).

Download citation

Further reading


Quick links