Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global controls on carbon storage in mangrove soils

Abstract

Global-scale variation in mangrove ecosystem properties has been explained using a conceptual framework linking geomorphological processes to distinct coastal environmental settings (CES) for nearly 50 years. However, these assumptions have not been empirically tested at the global scale. Here, we show that CES account for global variability in mangrove soil C:N:P stoichiometry and soil organic carbon (SOC) stocks. Using this ecogeomorphology framework, we developed a global model that captures variation in mangrove SOC stocks compatible with distinct CES. We show that mangrove SOC stocks have been underestimated by up to 50% (a difference of roughly 200 Mg ha−1) in carbonate settings and overestimated by up to 86% (around 400 Mg ha−1) in deltaic coastlines. Moreover, we provide information for 57 nations that currently lack SOC data, enabling these and other countries to develop or evaluate their blue carbon inventories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mangrove SOC, total nitrogen and total phosphorus, and C:N, N:P and C:P ratios in distinct CES in the neotropics.
Fig. 2: The effects of river and tidal power, temperature, precipitation, and PET lead to the formation of distinct CES and explain mangrove soil properties.
Fig. 3: Predicted global mangrove SOC stocks.
Fig. 4: Mean SOC stocks in different CES.
Fig. 5: Inter-study comparison of global mangrove SOC density estimates.

Similar content being viewed by others

References

  1. Boyd, R., Dalrymple, R. & Zaitlin, B. A. Classification of clastic coastal depositional environments. Sediment. Geol. 80, 139–150 (1992).

    Google Scholar 

  2. Dürr, H. H. et al. Worldwide typology of nearshore coastal systems: defining the estuarine filter of river inputs to the oceans. Estuaries Coasts 34, 441–458 (2011).

    Google Scholar 

  3. Thom, B. G. in Mangrove Ecosystems in Australia: Structure, Function and Management (ed. Clough, B. F.) 3–17 (Australian National Univ. Press, Canberra, 1982).

  4. Woodroffe, C. in Coastal and Estuarine Studies—Tropical Mangrove Ecosystems Vol 41 (eds Robertson, A. I. & Alongi, D. M.) 7–41 (American Geophysical Union, Washington DC, 1992).

  5. Wheaton, J. M., Gibbins, C., Wainwright, J., Larsen, L. & McElroy, B. Multiscale feedbacks in ecogeomorphology. Geomorphology 126, 265–268 (2011).

    Google Scholar 

  6. Twilley, R. R., Chen, R. & Hargis, T. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut. 64, 265–288 (1992).

    CAS  Google Scholar 

  7. Twilley, R. R. in Maximum Power: the Ideas and Applications of H. T. Odum (ed. Hall, C. A. S.) 43–62 (Univ. Press Colorado, Niwot, 1995).

  8. Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

    CAS  Google Scholar 

  9. Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).

    CAS  Google Scholar 

  10. Diamond, J. M. & Case, T. J. Community Ecology (Harper & Row, New York, 1986).

  11. Jardine, S. L. & Siikamäki, J. V. A global predictive model of carbon in mangrove soils. Environ. Res. Lett. 9, 104013 (2014).

    Google Scholar 

  12. Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Change 7, 523–528 (2017).

    CAS  Google Scholar 

  13. Lovelock, C. E., Feller, I. C., Ball, M. C., Ellis, J. & Sorrell, B. Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients. Ecol. Lett. 10, 1154–1163 (2007).

    CAS  Google Scholar 

  14. Harrison, J. A. et al. Dissolved inorganic phosphorus export to the coastal zone: results from a spatially explicit, global model. Glob. Biogeochem. Cycles 19, GB4S03 (2005).

    Google Scholar 

  15. Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

    CAS  Google Scholar 

  16. Henry, K. M. & Twilley, R. R. Soil development in a coastal Louisiana wetland during a climate-induced vegetation shift from salt marsh to mangrove. J. Coast. Res. 29, 1273–1283 (2013).

    Google Scholar 

  17. Xu, X., Thornton, P. E. & Post, W. M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol. Biogeogr. 22, 737–749 (2013).

    Google Scholar 

  18. Grömping, U. R package relaimpo: relative importance for linear regression. J. Stat. Softw. 17, 139–147 (2006).

    Google Scholar 

  19. Castañeda-Moya, E., Twilley, R. R. & Rivera-Monroy, V. H. Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Forest Ecol. Manag. 307, 226–241 (2013).

    Google Scholar 

  20. Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563 (2015).

    CAS  Google Scholar 

  21. Woodroffe, C. D. et al. Mangrove sedimentation and response to relative sea-level rise. Ann. Rev. Mar. Sci. 8, 243–266 (2016).

    CAS  Google Scholar 

  22. Ouyang, X., Lee, S. Y. & Connolly, R. M. The role of root decomposition in global mangrove and saltmarsh carbon budgets. Earth Sci. Rev. 166, 53–63 (2017).

    CAS  Google Scholar 

  23. Pregitzer, K. S., King, J. S., Burton, A. J. & Brown, S. E. Responses of tree fine roots to temperature. New Phytol. 147, 105–115 (2000).

    CAS  Google Scholar 

  24. Feher, L. C. et al. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands. Ecosphere 8, e01956 (2017).

    Google Scholar 

  25. Gabler, C. A. et al. Macroclimatic change expected to transform coastal wetland ecosystems this century. Nat. Clim. Change 7, 142–147 (2017).

    Google Scholar 

  26. Rovai, A. S. et al. Scaling mangrove aboveground biomass from site-level to continental-scale. Glob. Ecol. Biogeogr. 25, 286–298 (2016).

    Google Scholar 

  27. Hutchison, J. et al. Building an expert-judgment-based model of mangrove fisheries. Am. Fish. Soc. Symp. 83, 17–42 (2015).

    Google Scholar 

  28. Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).

    Google Scholar 

  29. Woodroffe, C. D. Coasts: Form, Process and Evolution (Cambridge Univ. Press, Cambridge, 2002).

  30. Koch, M. S., Benz, R. E. & Rudnick, D. T. Solid-phase phosphorus pools in highly organic carbonate sediments of northeastern Florida Bay. Estuar. Coast. Shelf Sci. 52, 279–291 (2001).

    CAS  Google Scholar 

  31. Twilley, R. R., Castañeda-Moya, E., Rivera-Monroy, V. H. & Rovai, A. S. in Mangrove Ecosystems: A Global Biogeographic Perspective (eds. Rivera-Monroy, V. H., Lee, S. Y., Kristensen, E. & Twilley, R. R.) Ch. 5 (Springer International Publishing, Zurich, 2017).

  32. Howard, J., Hoyt, S., Isensee, K., Pidgeon, E. & Telszewski, M. Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrass Meadows (Conservation International, Intergovernmental Oceanographic Commission of UNESCO & International Union for Conservation of Nature, 2014).

  33. Harris, D., Horwáth, W. R. & van Kessel, C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci. Soc. Am. J. 65, 1853–1856 (2001).

    CAS  Google Scholar 

  34. Aspila, K. I., Agemian, H. & Chau, A. S. Y. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101, 187–197 (1976).

    CAS  Google Scholar 

  35. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  36. Osland, M. J. et al. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob. Change Biol. 22, 1–11 (2016).

    Google Scholar 

  37. Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).

    CAS  Google Scholar 

  38. Osland, M. J. et al. Mangrove expansion and contraction at a poleward range limit: climate extremes and land–ocean temperature gradients. Ecology 98, 125–137 (2017).

    Google Scholar 

  39. Osland, M. J. et al. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol. Monogr. 87, 341–359 (2017).

    Google Scholar 

  40. Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).

    Google Scholar 

  41. Carrère, L., Lyard, F., Cancet, M., Guillot, A. & Roblou, L. FES 2012: a new global tidal model taking advantage of nearly 20 years of altimetry measurements. In Proc. 20 Years of Progress in Radar Altimetry Symp. (Avisno & cnes, 2012).

  42. Fekete, B. M., Vörösmarty, C. J. & Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob. Biogeochem. Cycles 16, 15-1–15-10 (2002).

    Google Scholar 

  43. Graham, M. H. & Edwards, M. S. Statistical significance versus fit: estimating the importance of individual factors in ecological analysis of variance. Oikos 93, 505–513 (2001).

    Google Scholar 

  44. Scott, A. J. & Knott, M. A cluster analysis method for grouping means in the analysis of variance. Biometrics 30, 507–512 (1974).

    Google Scholar 

  45. Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).

    Google Scholar 

  46. Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  47. Saintilan, N., Rogers, K., Mazumber, D. & Woodroffe, C. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuar. Coast. Shelf Sci. 128, 84–92 (2013).

    CAS  Google Scholar 

  48. Suárez-Abelenda, M. et al. The effect of nutrient-rich effluents from shrimp farming on mangrove soil carbon storage and geochemistry under semi-arid climate conditions in northern Brazil. Geoderma 213, 551–559 (2014).

    Google Scholar 

  49. Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738 (2016).

    Google Scholar 

Download references

Acknowledgements

The Brazilian foundations CAPES and CNPq, Louisiana Sea Grant College and NSF Coastal SEES programme (EAR-1427389) funded this work. The CAPES/CNPq Science without Borders and Post-doctoral Senior programmes provided international fellowships for A.S.R. (BEX1930/13-3), P.R.P. (18379/12-5) and A.L.F (209666/13-7). We are thankful to the Florida Coastal Everglades Long-Term Ecological Research programme (permit EVER-2013-SCI-0058), Rookery Bay National Estuarine Research Reserve (especially K. Cunniff) and J.N. “Ding” Darling National Wildlife Refuge (permit FWS 14042) for facilitating the collection of samples. We also thank S. L. Jardine for kindly providing a high-resolution mangrove soil carbon density grid to serve as a reference in our modelling analyses. We are extremely indebted to T. Blanchard (Department of Oceanography and Coastal Sciences, LSU) and P. Leandro (CATIE) for support with laboratory analyses, as well as to W. Weis and R. Menghini for assistance during fieldwork and A. Christensen and A. McCall for assistance with manipulation of the raster files.

Author information

Authors and Affiliations

Authors

Contributions

A.S.R. conceived the study, performed the statistical analyses and wrote the manuscript draft. P.R. and A.S.R. performed the modelling analyses. R.R.T., P.R.P., E.C.-M. and P.R. contributed to development of the work in general and helped to write the final version of the paper. M.C.-J. collected and analysed soil samples from El Salvador, Panama and some sites in Costa Rica. P.R.P., E.C.-M., M.M.-V., P.A.H., J.C.S. and A.L.F. contributed to field sampling and laboratory analyses.

Corresponding author

Correspondence to André S. Rovai.

Ethics declarations

Competing financial interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1, Supplementary Figures 1–6, Supplementary Tables 2–5, Supplementary References

Supplementary Table 1

Contains the global mangrove soil organic carbon density dataset used in the modelling analysis. File format: Excel, file size: 35KB

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rovai, A.S., Twilley, R.R., Castañeda-Moya, E. et al. Global controls on carbon storage in mangrove soils. Nature Clim Change 8, 534–538 (2018). https://doi.org/10.1038/s41558-018-0162-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-018-0162-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology